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Abstract

This paper proposes to build “implied stochastic volatility models” designed to fit option-

implied volatility data, and implements a method to construct such models. The method is based

on explicitly linking shape characteristics of the implied volatility surface to the specification

of the stochastic volatility model. We propose and implement parametric and nonparametric

versions of implied stochastic volatility models.
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1 Introduction

No-arbitrage pricing arguments for options most often start with an assumed dynamic model that

serves as the data generating process for the option’s underlying asset price. Most often again,
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that model is of the stochastic volatility type, see, e.g., Hull and White (1987), Heston (1993),

Bates (1996), Duffie et al. (2000), and Pan (2002). Unfortunately, the relationship between the

market data, namely option prices or equivalently, implied volatilities, and the model is not fully

explicit. Implied volatilities can only be computed numerically or approximated, even under the

affine stochastic volatility models, see, e.g., Duffie et al. (2000) and the references therein, for which

option prices admit analytical Fourier transforms.

As the variety of affine or non-affine specifications suggest, there is no accepted consensus on

the model specifications in the literature. There is however agreement that a stochastic volatility

model should produce option prices (or equivalently, implied volatilities) with the features that

are observed in the empirical data. A prevalent approach relies on fitting pre-specified models

with particular dynamics to data by estimation or calibration, with goodness-of-fit determined by

likelihood or mean-squared pricing errors. Alternatively, models can be calibrated to fit a set (a

continuum is often required) of options or other derivative prices exactly. Prominent examples of

the latter approach are the local volatility model of Dupire (1994) and the results of Andersen and

Andreasen (2000), Carr et al. (2004), Carr and Cousot (2011), and Carr and Cousot (2012) including

local Lévy jumps.

In the same spirit, we ask in this paper whether it is possible to use the information contained

in implied volatility data to conduct inference about an underlying stochastic volatility (rather than

a local volatility) model. At each point in time, implied volatility data take the form of a surface

representing the implied volatility of the option as a function of its moneyness and time to maturity.

We will show that it is possible to use a small number of observable and practically useful “shape

characteristics” of the implied volatility surface, including but not limited to the slope of the implied

volatility smile, to fully characterize the underlying stochastic volatility model.

For this purpose, we will rely on an expansion of the implied volatility surface in terms of time-

to-maturity and log-moneyness. Various types of expansions for implied volatilities or option prices,

obtained using different methods, are available in the literature. They include: small volatility-of-

volatility expansions, near a non-stochastic volatility, also known as small ε or small noise expansions,

see Kunitomo and Takahashi (2001) and Takahashi and Yamada (2012); expansion based on slow-

varying volatility, see Sircar and Papanicolaou (1999) and Lee (2001); expansion based on fast-varying

and slow-varying analysis, see Fouque et al. (2016); short maturity expansions, see Medvedev and

Scaillet (2007) (for an expansion with respect to the square of time-to-maturity with expansion

term sorted in terms of moneyness scaled by volatility), Durrleman (2010) (with a correction due

to Pagliarani and Pascucci (2017)), and Lorig et al. (2017); expansion using PDE methods, see

Berestycki et al. (2004); singular perturbation expansion, see Hagan and Woodward (1999); expansion

around an auxiliary model, see Kristensen and Mele (2011); expansion using transition density

expansion, see Gatheral et al. (2012) and Xiu (2014); expansion of the characteristic function, see
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Jacquier and Lorig (2015). Some of these methods apply generally, while others apply only to

specific models, such as the Heston model, as in Forde et al. (2012) (short maturity), Forde and

Jacquier (2011) (long maturity), or exponential Lévy models as in Andersen and Lipton (2013). The

asymptotic behavior of implied volatilities as time-to-maturity approaches zero is important: for the

continuous case, see Ledoit et al. (2002) and Berestycki et al. (2002), and with jumps, see Carr and

Wu (2003) and Durrleman (2008). Finally, a number of asymptotic results concerning long-dated,

short-dated, far out of the money strike, and jointly-varying strike-expiration regimes are available,

see Lee (2004), Gao and Lee (2014), and Tehranchi (2009).

The expansion we employ for our purposes is different from existing ones; it takes the form of a

bivariate series in time-to-maturity and log-moneyness, applies to general stochastic volatility models

and produces closed-form expressions for arbitrary stochastic volatility models with or without jumps.

Given the extensive literature on expansions, however, the novelty in this paper is not its expansion

(although it is new) but rather the use of such an expansion as a means to conduct inference on the

underlying stochastic volatility model. The existing literature on implied volatility expansions has

been primarily concerned with the derivation of the expansion and its properties, but rarely with

using the expansion for the purposes of estimating or testing the model that underlies the expansion.

Said differently, the main use of expansions in the literature has been in the following direction:

assuming a given stochastic volatility model, what can be said about the implied volatilities that this

model generates? In this paper, we take the reverse direction: taking the observed implied volatility

surface as given market data, what can be said about the stochastic volatility model that generated

the data? We answer this question by constructing “implied stochastic volatility models”, which

are stochastic volatility models whose characteristics have been completely estimated to reproduce

salient characteristics of the implied volatility data. Our approach consists in casting a small number

of observable shape characteristics of the implied volatility surface (its level, slope and convexity

along the moneyness dimension, as well as its slope along the term-structure dimension) as a set of

restrictions on the specification of the stochastic volatility model. If one is interested in estimating a

parametric stochastic volatility model, we show how to set up these restrictions as moment conditions

in GMM. If one is not willing to parametrize the model, we show how the functions characterizing

the stochastic volatility model can be recovered nonparametrically from the shape characteristics of

the implied volatility surface.

Applying the proposed method to S&P 500 index options, we construct an implied stochastic

volatility model with the following empirical features: a strong leverage effect between the innovations

in returns and volatility, mean reversion in volatility, monotonicity and state dependency in volatility

of volatility, while matching the features of the implied volatility surfaces: level, smile and convexity

in the log-moneyness direction, and slope in the term structure direction.

The paper is organized as follows. Section 2 sets up the problem we are studying, the notation,

3



and describes the set of relationships between the stochastic volatility model and the implied volatility

surface. We then use these relationships to propose two methods to construct an implied stochastic

volatility model, first parametric in Section 3 and then nonparametric in Section 4. We implement

these methods in Monte Carlo simulations in Section 5, showing that both the parametric and

nonparametric estimation methods are accurate, and then on real data in Section 6. Section 7

extends the analysis to allow for jumps in the returns dynamics of the stochastic volatility model

and discusses the empirical challenges that this poses. Section 8 concludes, while mathematical

details are contained in the Appendix.

2 Stochastic volatility models and implied volatility surfaces

Consider a generic continuous bivariate stochastic volatility (SV thereafter) model. Under an as-

sumed risk-neutral measure, the price of the underlying asset St and its volatility vt jointly follow a

diffusion process

dSt
St

= (r − d)dt+ vtdW1t, (1a)

dvt = µ(vt)dt+ γ(vt)dW1t + η(vt)dW2t. (1b)

We will add jumps in returns to the model in Section 7 below. Here, r and d are the risk-free rate

and the dividend yield of the underlying asset, both assumed constant for simplicity, and observable;

W1t and W2t are two independent standard Brownian motions; µ, γ, and η are scalar functions.

The generic specification (1a)–(1b) nests all existing continuous bivariate SV models. For models

conventionally expressed in terms of instantaneous variance rather than volatility (e.g., the model of

Heston (1993)), it is straightforward to obtain the equivalent form of (1a)–(1b) by Itô’s lemma. Our

objective is to fully identify the model, that is, vt at each discrete instant at which data sampling

occurs, and the unknown functions µ(·), γ(·) and η(·). This is a natural extension to stochastic

volatility models of the question answered in Dupire (1994) for local volatility models, which relied

on a method which cannot be used in the stochastic volatility context.1

We are also interested in the leverage effect coefficient function as the correlation function between

asset returns and innovations in spot volatility, defined as in Aı̈t-Sahalia et al. (2013) by

ρ(vt) =
γ(vt)√

γ(vt)2 + η(vt)2
. (2)

This coefficient function is identified once the other components of the model are. In general, ρ(vt)

is empirically found to be negative, and is in general stochastic since the dependence in vt need

1Local volatility models are of the form dSt/St = (r − d)dt + σ(St)dWt. The approach of Dupire (1994), based

on inverting the pricing equation for the function σ(·), cannot be extended from the local to the stochastic volatility

situation: when employed in a stochastic volatility setting, it can only characterize E [vT |ST , S0] rather than the full

dynamics (1b).
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not cancel out between the numerator and denominator in (2): see, e.g., the models of Jones (2003)

and Chernov et al. (2003), among others. For ρ(vt) to be independent of vt, i.e., ρ(v) ≡ ρ for some

constant ρ, it must be that η(v) = ργ(v)/
√

1− ρ2, i.e., the two functions η(v) and γ(v) are uniformly

proportional to each other. This is the case in the model of Heston (1993), for instance.

The arbitrage-free price of an European-style put option with maturity T, i.e., time-to-maturity

τ = T − t, and exercise strike K is (in terms of log-moneyness k = log (K/St))

P (τ, k, St, vt) = e−rτEt[max(Ste
k − ST , 0)],

where Et denotes the risk-neutral conditional expectation given the information up to time t. In

practice, the market price of an option is typically quoted through its Black-Scholes implied volatility

(IV thereafter) Σ, i.e., the value of the volatility parameter which, when plugged into the Black-

Scholes formula PBS(τ, k, St, σ), leads to a theoretical value equal to the observed market price of

the option2:

PBS(τ, k, St,Σ) = P (τ, k, St, vt).

Viewed simply as mapping actual option prices into a different unit, using implied volatilities does

not require that the assumptions of the Black-Scholes model be satisfied, and has a few advantages:

implied volatilities are independent of the scale of the underlying asset value or strike price, deviations

from a flat IV surface denote deviations from the Black-Scholes model (or equivalently deviations

from the Normality of log-returns), and such deviations can be monotonically interpreted (the higher

the IV above the flat level, the more expensive the option, and similarly below), so differences in IV

allow for relative value comparisons between options.

2.1 From stochastic volatility to implied volatility

The IV depends on St only through k, that is, Σ = Σ(τ, k, vt). This is because the option price can

be written in a form proportional to the time-t price St,

P (τ, k, St, vt) = StP̄ (τ, k, vt) with P̄ (τ, k, vt) = e−rτEt
[
max

(
ek − ST

St
, 0

)]
. (3)

For a given log-moneyness k, the function P̄ (τ, k, vt) is independent of the initial underlying asset

price St since the dynamics (1a) of the underlying asset price imply that the ratio ST /St is inde-

pendent of St, so is the expectation function (3) for defining P̄ (τ, k, vt). Writing PBS(τ, k, St, σ) =

StP̄BS(τ, k, σ), the IV Σ is determined by

P̄BS(τ, k,Σ) = P̄ (τ, k, vt), (4)

and therefore

Σ(τ, k, vt) = P̄−1
BS (τ, k, P̄ (τ, k, vt)). (5)

2Model implied volatilities calculated from put and call options are identical by put-call parity.
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The mapping (τ, k) 7−→ Σ(τ, k, vt) at a given t is the (model) IV surface at that time. We will

consider several shape characteristics of the IV surface such as its slope and convexity along the

log-moneyness and the term-structure dimensions, defined by the partial derivative ∂i+jΣ/∂τ i∂kj

for integers i, j ≥ 0. In particular, we will focus on the at-the-money (k = 0) and short maturity

(τ → 0) shape characteristics

Σi,j(vt) = lim
τ→0

∂i+j

∂τ i∂kj
Σ(τ, 0, vt). (6)

To illustrate, we show in Figure 1 the S&P 500 IV surface on a given day along with the two slopes

Σ0,1(vt) (log-moneyness slope, or IV smile) and Σ1,0(vt) (term-structure slope) as red and blue dashed

lines, respectively.

The idea in this paper is to treat the shape characteristics of the IV surface (6) as observable

from market data, and to use them to determine the SV model (1a)–(1b) that is compatible with

them. The tool we call upon for that purpose is that of IV asymptotic expansions, which express

the shape characteristics Σi,j(·) in terms of vt and the functions µ(·), γ(·) and η(·). The function Σ

admits an expansion of the form

Σ(J,L(J))(τ, k, vt) =
J∑
j=0

Lj∑
i=0

σ(i,j)(vt)τ
ikj , (7)

up to some integer expansion orders J and L(J) = (L0, L1, · · · , LJ) with Lj ≥ 0, and therefore

σ(i,j)(vt) =
1

i!j!
Σi,j(vt). (8)

For a given SV model, the coefficients σ(i,j)(·) can be derived in closed form to arbitrary order

one after the other. We provide the precise mathematical details in the Appendix. In a nutshell, we

first note that the (0, 0)th order term must be given by the instantaneous volatility

σ(0,0)(v) = v, (9)

which is a well-known fact (see, e.g., Ledoit et al. (2002) and Durrleman (2008).) The purpose of

an IV expansion is to compute the higher order coefficients in (7) for an arbitrary SV model. We

describe in Appendix A our method for achieving this goal; the advantage in our view compared to

many of the existing alternative approaches described in the Introduction is that this method yields

fully explicit coefficients, and does so for arbitrary SV models.

We illustrate the approach by focusing on the at-the-money level σ(0,0), slope σ(0,1), and convexity

σ(0,2) (up to a constant equal to 2) along the log-moneyness dimension, as well as the slope σ(1,0) along

the term-structure dimension, all for short time-to-maturity. These four basic shape characteristics

construct a skeleton of the IV surface, and thus conversely they can be extracted from an IV surface.

Set (J,L(J)) = (2, (1, 0, 0)) in (7), that is,

Σ(2,(1,0,0))(τ, k, vt) = σ(0,0)(vt) + σ(1,0)(vt)τ + σ(0,1)(vt)k + σ(0,2)(vt)k
2. (10)
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We show in Appendix A that

σ(0,1)(vt) =
1

2vt
γ(vt), σ

(0,2)(vt) =
1

12v3
t

[2vtγ(vt)γ
′(vt) + 2η(vt)

2 − 3γ(vt)
2], (11)

σ(1,0)(vt) =
1

24vt
[2γ(vt)(6(d− r)− 2vtγ

′(vt) + 3v2
t ) + 12vtµ(vt) + 3γ(vt)

2 + 2η(vt)
2]. (12)

These expressions provide the expansion of the IV surface that corresponds to a given specification of

the SV model. The main idea in this paper is to use conversely the IV surface expansion to estimate

the unknown coefficients functions of the SV model. In other words, treating the coefficients σ(0,0)(·),
σ(0,1)(·), σ(0,2)(·), and σ(1,0)(·) (and higher order coefficients if necessary) as observable from options

data, how can we use the data and these formulae to estimate the unknown functions µ(·), γ(·), and

η(·)?

2.2 From implied volatility to stochastic volatility

It is possible in fact to fully characterize the SV model from observations on the level, log-moneyness

slope and convexity, and term-structure slope of the IV surface. In other words, we view (11)–(12)

as a system of equations to be solved for γ(·), η(·), and µ(·), given the IV surface characteristics.

These equations lead to a useful estimation method because it turns out that they can be inverted

in closed form, so no further approximation, numerical solution of a differential equation or other

numerical inversion is required. First, observe that (11)–(12) imply

γ(vt) = 2σ(0,0)(vt)σ
(0,1)(vt), (13a)

and

η(vt) =
[
2
(

6σ(0,0)(vt)
3σ(0,2)(vt)− 2σ(0,0)(vt)γ(vt)γ

′(vt) + 3γ(vt)
2
)]−1/2

, (13b)

µ(vt) = 2σ(1,0)(vt) +
γ(vt)

6
(2γ′(vt)− 3σ(0,0)(vt))−

γ(vt)

σ(0,0)(vt)

(
d− r +

1

4
γ(vt)

)
− η(vt)

2

6σ(0,0)(vt)
. (13c)

Second, plug in (13a) into (13b), and then plug in both expressions into (13c) to obtain:

Theorem 1. The coefficient functions γ(·), η(·), and µ(·) of the SV model (1a)–(1b) can be recovered

in closed form as functions of the coefficients of the IV expansion (10) as follows:

γ(vt) = 2σ(0,0)(vt)σ
(0,1)(vt), (14a)

and

η(vt) = 2σ(0,0)(vt)
[
3σ(0,0)(vt)σ

(0,2)(vt) + 2σ(0,1)(vt)
2 − 4σ(0,0)(vt)σ

(0,1)(vt)σ
(0,1)′(vt)

]−1/2
, (14b)

µ(vt) = σ(0,0)(vt)
2

[
σ(0,1)(vt)(2σ

(0,1)′(vt)− 1)− 1

2
σ(0,2)(vt)

]
− 2(d− r)σ(0,1)(vt) + 2σ(1,0)(vt). (14c)

where σ(0,1)′(vt) represents the first order derivative of σ(0,1)(vt) with respect to vt.
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We note a few interesting implications of this result. First, (14a) shows that for a given IV level

σ(0,0)(vt), the slope σ(0,1)(vt) plays an important role in determining the volatility function γ(vt)

attached to the common Brownian shocks W1t of the asset price St and its volatility vt. For a fixed

level σ(0,0)(vt), a steeper slope σ(0,1)(vt) results in a higher absolute value of the volatility function

γ(vt). Second, from (14b), a steeper slope σ(0,1)(vt) has an effect on the volatility function η(vt)

attached to the idiosyncratic Brownian shock W2t in the volatility dynamics which can be of either

sign. Besides the level σ(0,0)(vt) and slope σ(0,1)(vt), the convexity σ(0,2)(vt) also matters for the

volatility function η(vt). The total spot volatility of volatility is
√
γ(vt)2 + η(vt)2, so for a fixed level

σ(0,0)(vt) and slope σ(0,1)(vt), a greater convexity σ(0,2)(vt) results in a larger volatility of volatility.

Third, from (2) and (14a), we see that the sign of the leverage effect coefficient ρ(vt) is determined

by the sign of the slope σ(0,1)(vt) : as is typically the case in the data, a downward-sloping IV smile,

σ(0,1)(vt) < 0, translates directly into ρ(vt) < 0. Further, ρ(vt) is monotonically decreasing in η(vt),

so it follows from (14b) and (2) that, for a fixed level σ(0,0)(vt) and slope σ(0,1)(vt), a greater convexity

σ(0,2)(vt) leads to a larger volatility of volatility, and consequently, a weaker leverage effect ρ(vt).

Finally, (14c) shows that for fixed levels of σ(0,0)(vt), σ
(0,1)(vt), and σ(0,2)(vt), an increase of the

term-structure slope σ(1,0)(vt) on the IV surface results in an increase in the drift µ(vt), i.e., a faster

expected change of the instantaneous volatility vt.

3 Constructing a parametric implied stochastic volatility model

We now turn to using the above connection between the specification of the SV model and the

resulting IV expansion in order to estimate the coefficient functions of a parametric SV model, doing

so in such a way that the estimated model generates option prices that match the observed features

of the IV surface.

We assume for now that the SV model (1a)–(1b) is a parametric one, so that µ(·) = µ(·; θ),
γ(·) = γ(·; θ), and η(·) = η(·; θ), where θ denotes the vector of unknown parameters to be estimated

in a compact space Θ ⊂ RK , and θ0 denotes their true values. We further assume that the parametric

functions are known, and twice continuously differentiable in θ.

To estimate θ, we propose to use the closed-form IV expansion coefficients to form moment

conditions. Assume that a total of n IV surfaces are observed with equidistant time interval ∆,

without loss of generality. On day l, we observe nl implied volatilities Σdata(τ
(m)
l , k

(m)
l ) along with

time-to-maturity τ
(m)
l and log-moneyness k

(m)
l for m = 1, 2, . . . , nl. We assume that the data are

stationary and strong mixing with rate greater than two.

The moment functions we propose to use are

g(i,j)(vl∆; θ) = [σ(i,j)]data
l − [σ(i,j)(vl∆; θ)]model, (15)

where [σ(i,j)]data
l (resp. [σ(i,j)(vl∆; θ)]model) denote the data coefficients (resp. the closed-form for-
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mulae given in (11)–(12) and additional higher orders if necessary) of the expansion terms σ(i,j)(vl∆)

of (7).

We gather the different moment conditions g(i.j) into a vector

g(vl∆; θ) = (g(i,j)(vl∆; θ))(i,j)∈I

of moment conditions, for some integer index set I consisting of nonnegative integer pairs (i, j)

such that i + j ≥ 1 : for example, I = {(1, 0) , (0, 1) , (0, 2)}. The choice of moment conditions is

flexible, depending on the shape characteristics one decides to fit, and the number of parameters to

be estimated, and may include higher order terms. We assume that

E[g(vl∆; θ0)] = 0

and E[g(vl∆; θ)] 6= 0 for θ 6= θ0 holds. We also assume that θ0 is in the interior of Θ. As the moments

are given by coefficients of an expansion, a bias term of small order is left, an effect similar to that

in Aı̈t-Sahalia and Mykland (2003). We treat this term as negligible on the basis of fitting each IV

surface near its at-the-money and short maturity point.

To extract [σ(i,j)]data
l from the observed options data, recall the form of the expansion (7), which

can be interpreted as a polynomial regression of IV on time-to-maturity τ and log-moneyness k. So,

on any day l, we regress

Σdata(τ
(m)
l , k

(m)
l ) =

J∑
j=0

Lj∑
i=0

β
(i,j)
l (τ

(m)
l )i(k

(m)
l )j + ε

(m)
l , for m = 1, 2, . . . , nl, (16)

where ε
(m)
l represent i.i.d. exogenous observation errors with zero means.3 The coefficient σ(i,j)(vl∆)

of the expansion (7) is then estimated by the regression coefficient β
(i,j)
l in (16):

[σ(i,j)]data
l = β̂

(i,j)
l , for i, j ≥ 0; (17)

in particular, vl∆ = [σ(0,0)]data
l = β̂

(0,0)
l . While the objects of interest (6) are derivatives of the IV

surface Σ evaluated at (τ, k) = (0, 0), the regression (16) includes observations with (τ, k) away from

(0, 0) in order to estimate these derivatives.

To estimate the parameters θ by GMM (see Hansen (1982)) we construct the sample analog of

E[g(vl∆; θ)] as follows:

gn (θ) ≡ 1

n

n∑
l=1

g(vl∆; θ).

The estimator θ̂ is defined as the solution of the quadratic minimization problem

θ̂ = argmin
θ

gn (θ)ᵀWngn (θ) , (18)

3This is a generalization of the linear regression in Dumas et al. (1998) of implied volatilities on τ and K = Ste
k.
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where Wn is a positive definite weight matrix. If the number of moment conditions is equal to that

of parameters to estimate, i.e., the model is exactly identified, the estimator θ̂ is the solution of the

(system of) equations

gn(θ̂) = 0,

and the choice of Wn does not matter. Otherwise, i.e., if the number of moment conditions is greater

than that of parameters to estimate, the model is over-identified and the optimal choice of the weight

matrix Wn follows from a standard two-step estimation.

The asymptotic behavior of θ̂ is given by

θ̂
P→ θ0 and

√
n(θ̂ − θ0)

d→ N
(
0, V −1(θ0)

)
, as n→∞, (19)

where

V (θ) = G(θ)ᵀΩ−1(θ)G(θ), with G(θ) = E
[
∂g (vl∆; θ)

∂θ

]
, Ω(θ) = Ω0(θ) +

n−1∑
j=1

(Ωj(θ) + Ωj(θ)
ᵀ) ,

and

Ωj(θ) = E[g(vl∆; θ)g(v(l+j)∆; θ)ᵀ], for j = 0, 1, 2, . . . , n− 1.

A consistent estimator of the matrix V̂ (θ) is given by

V̂ (θ) = Ĝ(θ)ᵀΩ̂−1(θ)Ĝ(θ), with Ĝ(θ) =
1

n

n∑
l=1

∂g (vl∆, θ)

∂θ
. (20)

In the exactly identified case, the matrix Ω̂(θ) is the Newey-West estimator with ` lags:

Ω̂(θ) = Ω̂0(θ) +
∑̀
j=1

(
`+ 1− j
`+ 1

)(
Ω̂j(θ) + Ω̂j(θ)

ᵀ
)
, (21)

where

Ω̂0(θ) =
1

n

n∑
l=1

g(vl∆; θ)g(vl∆; θ)ᵀ and Ω̂j(θ) =
1

n

n∑
l=j+1

g(vl∆; θ)g(v(l−j)∆; θ)ᵀ, for j = 1, 2, . . . `.

In principle, the number of lags ` grows with n at the rate ` = O(n1/3). In the over-identified case,

the optimal choice of Wn ought to be a consistent estimator of Ω̂−1(θ0). For this, the estimator θ̂ is

obtained by the following two steps: First, set the initial weight matrix Wn in (18) as the identity

matrix and arrive at a consistent estimator θ̃. Second, compute Ω̂(θ̃) according to (21), so that its

inverse Ω̂−1(θ̃) is a consistent estimator of Ω−1(θ0). Then set the weight matrix Wn in (18) as Ω̂−1(θ̃)

and update the estimator to θ̂.

We provide below in Section 5.1 an example showing how to construct a Heston implied stochas-

tic volatility model, and the results of Monte Carlo simulations where the model is either exactly
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identified or over-identified. We find that for each parameter, the bias of the estimator is less than the

corresponding finite-sample standard deviation and that the estimator

√
V̂ −1(θ̂)/n of the asymptotic

standard deviations, calculated according to (20), provides a reliable way of approximating standard

errors for the parameters.

4 Constructing a nonparametric implied stochastic volatility model

We now turn to the case where no parametric form is assumed for the coefficient functions µ(·), γ(·),
and η(·) of the SV model, and show how the coefficients of the IV expansion (10) can be employed

to recover them.

Theorem 1 can now be employed to construct the following explicit nonparametric estimation

method for SV models. As in the parametric case of Section 3, the data for the four expansion terms

σ(0,0), σ(0,1), σ(0,2), and σ(1,0) are regarded as input and obtained by a polynomial regression (16) of

IV on time-to-maturity and log-moneyness. As in (15), we denote by vl∆ = [σ(0,0)]data
l , [σ(0,1)]data

l ,

[σ(0,2)]data
l , and [σ(1,0)]data

l these data at time l∆.

To estimate γ(·) nonparametrically, we rely on (14a). Let

[γ]data
l = 2[σ(0,0)]data

l [σ(0,1)]data
l , (22)

and consider the nonparametric regression

[γ]data
l = γ(vl∆) + εl, (23)

where vl∆ is the explanatory variable, and εl represents the exogenous observation error. The function

γ(·) can be estimated based on (23) using a local polynomial kernel regression (see, e.g., Fan and

Gijbels (1996).)

To estimate the coefficient functions η(·) and µ(·), we implement the closed-form relations (13b)–

(13c).4 Note that these equations require to estimate both the function γ and its derivative γ′. One

advantage of local polynomial kernel regression is that it provides in one pass not only an estimator

of the regression function but also of its derivative(s). Consider specifically locally linear kernel

regression. For two arbitrary points v and w, suppose that γ(w) can be approximated by its first

order Taylor expansion around w = v, i.e., γ(w) ≈ γ(v)+γ′(v)(w−v). Then, for any arbitrary value

v of the independent variable, [γ]data
l is regarded as being approximately generated from the local

linear regression as follows:

[γ]data
l ≈ α0 + α1(vl∆ − v) + εl,

where the localization argument makes the intercept α0 and slope α1 coincide with γ and its first

4It is mathematically equivalent to implement the closed-form formulae (14b)–(14c) in Theorem 1.
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order derivative γ′ evaluated at v, respectively, i.e.,

γ̂(v) = α̂0 and γ̂′(v) = α̂1.
5

The estimators α̂0 and α̂1 are obtained from the following weighted least squares minimization

problem

(α̂0, α̂1) = argmin
α0,α1

n∑
l=1

([γ]data
l − α0 − α1(vl∆ − v))2K

(
vl∆ − v
h

)
, (24)

where K denotes a kernel function and h the bandwidth. In practice, we use the Epanechnikov kernel

K(z) =
3

4
(1− z2)1{|z|<1},

and a bandwidth h selected either by the standard rule of thumb or by standard cross-validation,

which minimizes the sum of leave-one-out squared errors. The sum of leave-one-out squared errors,

e.g., for the volatility function γ, is given by
∑n

l=1([γ]data
l − α̂0,−l)

2, where α̂0,−l is the local linear

estimator α̂0, at v = vl∆, obtained from the weighted least squares problem (24) but without using

the lth observation (vl∆, [γ]data
l ).6

Next, in light of (13b), we define

[η]data
l =

[
2
(

6([σ(0,0)]data
l )3[σ(0,2)]data

l − 2[σ(0,0)]data
l γ̂(vl∆)γ̂′(vl∆) + 3γ̂(vl∆)2

)]−1/2
,

given [σ(0,0)]data
l and [σ(0,2)]data

l , i.e., those of the expansion terms σ(0,0) and σ(0,2), as well as the

estimators of γ and γ′ obtained previously. In practice, on the right hand side of the above equation,

the quantity inside the bracket [·]−1/2 may take a negative value, owing to sampling noise in the data

[σ(0,0)]data
l and [σ(0,2)]data

l . To solve this problem, we work instead with [η2]data
l defined as

[η2]data
l =

[
2
(

6([σ(0,0)]data
l )3[σ(0,2)]data

l − 2[σ(0,0)]data
l γ̂(vl∆)γ̂′(vl∆) + 3γ̂(vl∆)2

)]−1
. (25)

We then estimate the coefficient functions η2(·) at each value v by a kernel regression that localizes

the data [η2]data
l at each point v = vl∆, as we did in (24) for γ(·). In our experience, the estimator

η̂2(·) is always nonnegative thanks to the kernel smoothing (even though a small number of data

points [η2]data
l may be negative.) We then define η̂(·) ≡

[
η̂2(·)

]1/2
.

5Note that γ̂′(v) is an estimator of γ′(v) but is not the derivative of γ̂(v).
6For a choice of kernel function K with bandwidth h, the solution of the weighted least squares problem (24) is

explicitly given by

α̂0 =

(
n∑

i,j=1

sij(v)(vi∆ − v)

)−1( n∑
i,j=1

sij(v)(vi∆ − v)yj∆

)
and α̂1 = −

(
n∑

i,j=1

sij(v)(vi∆ − v)

)−1( n∑
i,j=1

sij(v)yj∆

)
,

where

sij(v) = K
(vi∆ − v

h

)
K
(vj∆ − v

h

)
(vi∆ − vj∆).
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Finally, in light of (13c), we define

[µ]data
l = 2[σ(1,0)]data

l +
γ̂(vl∆)

6
(2γ̂′(vl∆)− 3[σ(0,0)]data

l ) (26)

− η̂(vl∆)2

6[σ(0,0)]data
l

− γ̂(vl∆)

[σ(0,0)]data
l

(
d− r +

1

4
γ̂(vl∆)

)
.

given the estimators of γ, γ′, and η2 obtained previously and estimate the coefficient function µ(·)
at each value v using on the data (26) the same kernel localization procedure (24) as employed for

γ̂(·) and η̂2(·).

5 Monte Carlo simulation results

In this Section, we conduct Monte Carlo simulations to determine whether the coefficient functions

of the SV model can be accurately recovered, either parametrically or nonparametrically, using the

methods we proposed in Sections 3 and 4.

5.1 An implied Heston model

Consider first the parametric case, which we illustrate with the SV model of Heston (1993). Under

the assumed risk-neutral measure, the underlying asset price St and its spot variance Vt = v2
t follow

dSt
St

= (r − d)dt+
√
VtdW1t, (27a)

dVt = κ(α− Vt)dt+ ξ
√
Vt[ρdW1t +

√
1− ρ2dW2t], (27b)

where W1t and W2t are independent standard Brownian motions. Here, the parameter vector is

θ = (κ, α, ξ, ρ) and we assume that Feller’s condition holds: 2κα > ξ2. The leverage effect parameter

is ρ ∈ [−1, 1].

To estimate the four parameters in θ = (κ, α, ξ, ρ), we successively employ the four moment

conditions in g = (g(1,0), g(0,1), g(0,2), g(1,1))ᵀ to exactly identify the parameters or employ the five

moment conditions in g = (g(1,0), g(0,1), g(0,2), g(1,1), g(2,0))ᵀ to over-identify the parameters. We

impose α > 0, κ > 0, ξ > 0 and Feller’s condition as constraints during the GMM minimization (18).

Itô’s lemma applied to vt =
√
Vt yields

µ(v) =
κ(α− v2)

2v
− ξ2

8v
, γ(v) =

ξρ

2
, η(v) =

ξ
√

1− ρ2

2
. (28)

Then, applying the results of Section 2.1 and the general method for deriving higher orders in

Appendix A, we can calculate the expansion terms σ(0,1)(v), σ(0,2)(v), σ(1,0)(v), σ(1,1)(v), and σ(2,0)(v):

σ(0,0)(v) = v, σ(0,1)(v) =
ρξ

4v
, σ(0,2)(v) = − 1

48v3

(
5ρ2 − 2

)
ξ2, (29)

13



and

σ(1,0)(v) =
1

96v

(
ξ
(
24ρ(d− r) + ξ

(
ρ2 − 4

))
+ v2(12ξρ− 24κ) + 24κα

)
,

σ(1,1)(v) = − ξ

384v3

(
16
(
2− 5ρ2

)
(r − d)ξ + ρ

(
40κα+ 3

(
3ρ2 − 4

)
ξ2 + v2(4ρξ − 8κ)

))
,

σ(2,0)(v) =
1

30720v3

[
ξ2
(
−640(r2 + d2)

(
5ρ2 − 2

)
+ 80d

(
3ρ
(
4− 3ρ2

)
ξ + 16

(
5ρ2 − 2

)
r
)

+
(
59ρ4 − 88ρ2 − 16

)
ξ2 + 240ρ

(
3ρ2 − 4

)
rξ
)

+ 320v4
(
5κ2 − 5κρξ +

(
2ρ2 − 1

)
ξ2
)

− 80καξ
(
40dρ+

(
5ρ2 − 8

)
ξ − 40ρr

)
− 40v2(2κ− ρξ)

(
ξ
(
−8dρ+ 3ρ2ξ + 8ρr

−4ξ) + 8κα)− 960κ2α2
]
.

We now generate a time series of (St, Vt) with n = 1, 000 consecutive samples at the daily

frequency, i.e., with time increment ∆ = 1/252, by subsampling higher frequency data simulated

using the Euler scheme. The parameter values are r = 0.03, d = 0, κ = 3, α = 0.04, ξ = 0.2,

and ρ = −0.7. Each day, we calculate option prices with time-to-maturity τ equal to 5, 10, 15, 20,

25, and 30 days and for each time-to-maturity τ, include 20 log-moneyness values k within ±vt
√
τ ,

where τ is annualized and vt is the spot volatility. The principles for judiciously choosing such a

region of (τ, k) for simulation will be intensively discussed in the next paragraph. Due to the affine

nature of the model of Heston (1993), these option prices can be calculated by Fourier transform

inversion and compute the corresponding IV values. To mimic a realistic market scenario, we add

observation errors to these implied volatilities, sampled from a Normal distribution with mean zero

and constant standard deviation equals to 15 bps and further assumed to be uncorrelated across

time-to-maturity and log-moneyness, as well as over time. Then, for each IV surface, we follow the

regression procedure described around (16) to extract the estimated coefficients β̂
(i,j)
l of the bivariate

regression (16).

In practice, one needs to choose the orders J, L0, L1, . . . , LJ in the bivariate polynomial regression

in (16) and the region in (τ, k) of the IV surface data to compute the regression. On the one hand, we

need at a minimum to include enough orders in the regression to estimate the coefficients of interest

for the estimation method; recall that we need the terms σ(0,0), σ(0,1), σ(0,2), σ(1,0), and σ(1,1) for

constructing an exactly identified Heston model, and need to include an additional term σ(2,0) for

constructing an over-identified one. But we can consistently estimate all these lower order coefficients

from a higher order regression, discarding the estimates of the higher order coefficients. On the other

hand, the orders cannot be chosen as too high and the region in (τ, k) cannot be chosen as too narrow

to avoid over-fitting the regression. Specifically, we set the order to be (J,L(J)) = (2, (2, 2, 1)), so:

Σdata(τ
(m)
l , k

(m)
l ) = β

(0,0)
l + β

(1,0)
l τ

(m)
l + β

(2,0)
l (τ

(m)
l )2 + β

(0,1)
l k

(m)
l + β

(1,1)
l τ

(m)
l k

(m)
l

+ β
(2,1)
l (τ

(m)
l )2k

(m)
l + β

(0,2)
l (k

(m)
l )2 + β

(1,2)
l τ

(m)
l (k

(m)
l )2 + ε

(m)
l , (30)
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for m = 1, 2, . . . , nl. The estimated coefficients from this regression estimate the IV surface charac-

teristics that we need (recall (17)).

We then implement the method proposed in Section 3 to estimate the model parametrically. We

consider two cases. The first one is exactly identified using g = (g(1,0), g(0,1), g(0,2), g(1,1))ᵀ, while the

second adds one more moment condition, g(2,0), to over-identify the parameters. Table 1 summarizes

the results. We find that, for each parameter, the absolute bias is relatively small and is less than the

corresponding finite-sample standard deviation. In the exactly identified (resp. over-identified) case,

we compare for each parameter the finite-sample standard deviation exhibited in the fourth (resp.

sixth) column of Table 1 with the consistent estimator of its asymptotic counterpart, based on V̂ (θ̂)

given in (20). Figure 2 (resp. 3) compares the finite-sample standard deviation for each parameter

with the distribution of sample-based asymptotic counterparts in the exactly identified (resp. over-

identified) case. Consider the upper left panel of Figure 2 as an example. The histogram characterizes

the distribution of sample-based asymptotic standard deviation
√
V̂ −1

11 (θ̂)/n for parameter κ, where

V̂ −1
11 represents the (1, 1)th entry of matrix V̂ −1. The red star marks the corresponding finite-sample

standard deviation shown in the fourth cell from the first row of Table 1. As shown from Figures 2

and 3, for each parameter, the finite-sample standard deviation falls within the range of its sampled-

based asymptotic counterparts in both cases. As the sample size further increases, the finite-sample

standard deviation and its sampled-based asymptotic counterpart tend to converge to each other,

and shows that the sampled-based approximation

√
V̂ −1(θ̂)/n of the asymptotic standard deviations

is a reasonable estimator of the standard errors.

5.2 Nonparametric implied stochastic volatility model

Next, we apply the nonparametric method of Section 4 to the simulated data that was generated

under the Heston model. In Figure 4, the upper left, upper right, middle left, and middle right panels

exhibit the results for nonparametrically estimating the functions µ, −γ, η2, and η of model (1a)–

(1b), respectively. Consider the upper left panel for the function µ. We perform local polynomial

regression at equidistantly distributed values of v in the interval [0.1, 0.3]. For each v ∈ [0.1, 0.3], we

mark the true value of µ(v) by a blue dot, according to its equation given in (28), and plot the mean

of estimators of µ(v) on a black solid curve. Then, we generate each point on the upper (resp. lower)

dashed curve from vertically upward (resp. downward) shifting the corresponding one on the mean

curve by a distance equal to twice of the corresponding finite-sample standard deviation. As seen

from the figure, the shape of estimated nonparametric function resembles that of the true one on

average. Besides, the two dashed curves sandwich the true curve. This indicates that, at each point

of interest, the nonparametric estimator is sufficiently close to the true value that the estimation

bias is less than twice of the corresponding standard deviation.

We then combine the estimators γ̂(·) and η̂2(·) to estimate the leverage effect ρ(vt) under the
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nonparametric implied stochastic volatility model (1a)–(1b) by

ρ̂(vt) =
γ̂(vt)√

γ̂(vt)2 + η̂(vt)2
. (31)

As in the other four panels of Figure 4, we exhibit the estimation results for ρ(v) in the lowest

panel. We find that the shape of the estimated function ρ(v) is approximately constant at the level

of parameter ρ, as it ought to be under the model of Heston (1993).

We propose in what follows a bootstrap estimator of standard error. It is based on multiple

bootstrap replications out of one simulation trial, for mimicking an empirical estimation scenario.

In each bootstrap replication, we reproduce an IV surface for each day. The reproduced surface

contains the same number of implied volatilities as that of the original surface, and the implied

volatilities on the reproduced surface are sampled as i.i.d. replications of the volatilities on the

original surface. Based on the bootstrap “data”, we apply the same estimation method proposed

in Section 4 to obtain the bootstrap estimators of functions µ(·), −γ(·), η2(·), η(·), and ρ(·). The

bootstrap standard error of each function is accordingly calculated as the standard deviations of its

multiple bootstrap estimators.

To validate this method, which we will employ below in real data, we randomly select one

simulation trial and calculate the bootstrap standard error of each coefficient function out of 500

corresponding bootstrap estimators. Figure 5 summarizes the estimation result of this trial. In

each panel of Figure 5, the blue dotted (resp. black solid) curve represents the true function (resp.

nonparametric estimator.) Each point on the upper (resp. lower) dashed curve is plotted from

vertically upward (resp. downward) shifting the corresponding one on the black solid curve by a

distance equal to twice of the corresponding bootstrap standard error. Figure 5 suggests that our

nonparametric estimators are all accurate, as they are close to the corresponding true functions.

More importantly, the bootstrap method appears to be valid from a comparison of each panel in

Figure 5 with the corresponding one in Figure 4. Compare the upper right panels of Figures 5 and

4 as an example. For any v, the lengths of intervals bounded by the two dashed curves in these two

panels are close to each other. Thus, the bootstrap standard errors seem to provide a reliable way

for calculating standard deviations in the coming empirical analysis.

6 Empirical results

We now employ S&P 500 options data covering the period from January 2, 2013 to December 29,

2017, obtained from OptionMetrics. Guided by the simulations evidence discussed above, we select

options with time-to-maturity between 15 and 60 calendar days, thereby excluding both extremely

short-maturity ones which are subject to significant trading effects and biases, and long-maturity ones

for which the IV expansion becomes less accurate. Table 2 reports the basic descriptive statistics of
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the sample of 269,622 observations. Table 2 divides the data into three (calendar) days-to-expiration

categories and six log-moneyness categories. For each category, we report the total number, mean,

and standard deviation of implied volatilities therein.

As in the simulations, we implement each day the regression (16) of implied volatilities with time-

to-maturities between 15 and 60 days, and log-moneyness within ±vt
√
τ . Here, τ is the annualized

time-to-maturity and vt is the instantaneous volatility, which is estimated by the observed IV with

both the time-to-maturity τ and the log-moneyness k closest to 0 on that day. We run the regression

only if at least four different time-to-maturities between 15 and 60 days are available; otherwise, we

do not include that day in the sample. We end up with n = 1, 002 IV surfaces at the daily frequency

∆ = 1/252. Moreover, for choosing the order of polynomial regression (16), a reasonable compromise

is to set (J,L(J)) = (2, (2, 2, 0)), i.e.,

Σdata(τ
(m)
l , k

(m)
l ) = β

(0,0)
l + β

(1,0)
l τ

(m)
l + β

(2,0)
l (τ

(m)
l )2 + β

(0,1)
l k

(m)
l

+ β
(1,1)
l τ

(m)
l k

(m)
l + β

(2,1)
l (τ

(m)
l )2k

(m)
l + β

(0,2)
l (k

(m)
l )2 + ε

(m)
l . (32)

Comparing with the bivariate regression (30) employed in the Monte Carlo experiments, we extend

the time-to-maturity τ of the employed IV data to 60 days owing the deficiency of data with τ less

than 30 days in practice, and remove a high order regression coefficient β
(1,2)
l to reduce the standard

errors of the estimators of other low order coefficients without loss of accuracy.

Figure 6 plots a histogram of the R2 values achieved by the parametric regressions (32) across

the full sample of IV surfaces. We find that for over 95% of the sample the R2 are greater than

0.96, and essentially none are lower than 0.90, suggesting that (32) is quite successful at fitting the

data. Incidentally, practitioners often use polynomial regression to fit the short-maturity near at-

the-money region of the IV surfaces in their own internal models7, so it is not surprising that the

market data we collect end up reflecting this feature. As an example, Figure 7 plots the IV data

and the corresponding fitted surface produced by regression (32) on a randomly selected day in our

sample (January 3, 2017).

6.1 Parametric implied stochastic volatility model

We now implement the method of Section 3 to estimate a parametric implied stochastic volatility

model of the Heston (1993) type. Table 3 reports the GMM results for both of the exactly identi-

fied and over-identified cases. First, the estimators of ρ are around −0.6 in both cases, consistent

with what can be heuristically inferred directly from the [σ(0,0)]data and [σ(0,2)]data, depicted by the

corresponding histograms in Figure 8. The mean and standard deviation of the multiplicative data

([σ(0,0)]data)3[σ(0,2)]data are 1.55× 10−4 and 7.19× 10−3, respectively. Thus, there is no evidence for

7See, e.g., Gatheral (2006).

17



the mean of ([σ(0,0)]data)3[σ(0,2)]data to be significantly different from zero. On the other hand, it

follows from the closed-form formulae for σ(0,0)(v) and σ(0,2)(v) given in (29) that

σ(0,0)(v)3σ(0,2)(v) = − 1

48

(
5ρ2 − 2

)
ξ2.

Heuristically, moment matching by equating the estimated zero mean requires −
(
5ρ2 − 2

)
ξ2/48 = 0.

This would approximately estimate ρ as −0.63, independently of the values of v and ξ.

Second, the estimator of ξ is around 1 (resp. 0.8) in the exactly identified (resp. over-identified)

case. We find that, for both of these two cases, the estimators of ξ are somewhat greater than those

in the literature, which are usually less than 0.55 (see, e.g., Eraker et al. (2003), Aı̈t-Sahalia and

Kimmel (2007), and Christoffersen et al. (2010) among others.) As pointed out in, e.g., Eraker et al.

(2003), the Heston model tends to underestimate the slope of the IV smile with small estimators of

ξ. However, our implied stochastic volatility model forces the model to fit this slope by construction.

Recall that the closed-form formula for the slope σ(0,1), given in (29), is σ(0,1)(v) = ρξ/(4v). Thus,

for fitting the usually steep slope, the corresponding moment condition requires (given ρ) ξ to be

larger than other methods, and this is what our GMM estimation procedure produces. Furthermore,

based on the data [σ(0,0)]data and [σ(0,1)]data shown in Figure 8, the mean of the multiplicative data

[σ(0,0)]data[σ(0,2)]data is −0.17. On the other hand, it follows from (29) that

σ(0,0)(v)σ(0,1)(v) =
ρξ

4
.

Similar to the aforementioned determination of ρ via the heuristic moment matching, we plug the

estimated mean −0.17 of the multiplicative data and the estimator −0.619 of ρ as shown Table 3 into

the above formula to solve the parameter ξ as 1.1, which basically agrees with our GMM estimator.

Third, in both the exactly identified and over-identified cases, the estimators for κ are larger than

10, which are larger values than those estimated in the literature. This is necessary given the large

values of the volatility of variance ξ, to keep the volatility process vt mean-reverting sufficiently fast

and consequently diminish the likelihood of having extreme volatilities. Fourth, again in both cases,

the estimators of the long term variance value α are around 0.02, which is consistent with the low

values recorded by the S&P 500 volatility during the sample period.

6.2 Nonparametric implied stochastic volatility model

Using the same data, and the same expansion terms σ(0,0), σ(0,1), σ(0,2), and σ(1,0) estimated from

(32), we now follow the method proposed in Section 4 to construct a nonparametric implied stochastic

volatility model.

The results are summarized in Figure 9. The upper left, upper right, and middle left panels

show the estimators µ̂(·), −γ̂(·), and η̂2(·), respectively. The different elements in each panel are as

follows. Consider the upper left panel. The dots represent realizations of [µ]data, which we recall are
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calculated according to (26) while the nonparametric estimator of the function µ is shown as the solid

curve. The confidence intervals on the curve are pointwise and represent two standard errors. The

standard errors are calculated by a standard bootstrap procedure based on 500 bootstrap replications

as proposed and validated in Section 5.2. Given the nonparametric estimator of η2 obtained based

on the real sample (resp. bootstrap sample), we calculate the corresponding estimator of η by taking

a square root. The result for this calculation are presented in the middle right panel. Finally, given

the estimators of γ and η2 based on the real sample (resp. bootstrap sample), we calculate the

corresponding estimator of the leverage effect function ρ, i.e., ρ̂(vt) = γ̂(vt)/
√
γ̂(vt)2 + η̂(vt)2. The

results are shown in the lowest panel. Likewise, the standard error of the estimators η̂ (resp. ρ̂) is

calculated by the standard deviation of 500 bootstrap estimators of η (resp. ρ.)

We find that µ̂(·) is positive (resp. negative) when its argument is relatively small (resp. large),

consistent with mean reversion in vt. The upper right panel indicates that the coefficient function

γ̂(·) is always negative (the upper right panel shows −γ̂(·)) and approximately linear. As shown in

the middle right panel, η̂(·) is always positive and concave, as opposed to being approximately linear

as γ is. The leverage effect estimator ρ̂(·) is consistently negative, non constant, and more negative

when vt increases. The negativeness of ρ(·) is a direct consequence of that of γ given (2). This non

constant shape of ρ̂(·) versus vt implies that the leverage effect ρ(vt) is indeed stochastic, unlike the

assumption in the Heston model.

Finally, we verify that the goodness-of-fit of the expansion terms σ(i,j) involved in (32). In

each panel of Figure 10, we plot the data of expansion term σ(i,j) as well as its fitted values σ̂(i,j).

Here, the data are inferred from bivariate regression (32), while the fitted values σ̂(i,j) are obtained

by plugging in µ̂, γ̂ and η̂, as well as γ̂′ (which we recall is estimated at the same time as γ̂ by

locally linear kernel regression) in the corresponding formula for σ(i,j) given in (11)–(12). The

fitted expansion terms σ̂(0,1), σ̂(0,2), and σ̂(1,0) match the data well, which is expected since they are

inputs in the construction. Surprisingly, however, we find that the fitted expansion terms σ̂(1,1) and

σ̂(2,0) also match the data well, as shown in the middle right and lowest panels of Figure 10, even

though the expansion terms σ(1,1) and σ(2,0) (corresponding to the mixed slope Σ1,1 and term-

structure convexity Σ2,0 of the IV surface up some constants according to (8)) are not employed

in the nonparametric construction of the implied model, and require higher order derivatives of the

coefficient functions. This indicates that the nonparametric implied stochastic volatility model is

flexible enough to reproduce all the second order shape characteristics of IV surface, or equivalently

that all the shape characteristics of the IV surface up to the second order are consistent with the

nonparametric implied stochastic volatility model. All the aforementioned six shape characteristics,

that our implied model fits, are more than enough for characterizing an IV surface in the short-

maturity and near at-the-money region.
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7 Extension: Adding jumps to the model

We now generalize our approach to include jumps in returns to the model (1a)–(1b):

dSt
St−

= (r − d− λ(vt)µ̄)dt+ vtdW1t + (exp(Jt)− 1)dNt, (33a)

dvt = µ(vt)dt+ γ(vt)dW1t + η(vt)dW2t. (33b)

Nt is a doubly stochastic Poisson process (or Cox process) with stochastic intensity λ(vt). Jt rep-

resents the size of log-price jump, which is assumed to be independent of the asset price St. When

a jump occurs at time t, the log-price logSt changes according to logSt − logSt− = Jt, i.e.,

St − St− = (exp(Jt) − 1)St−, where St− denotes the pre-jump price of the asset. The constant

µ̄ is

µ̄ = E[exp(Jt)]− 1,

where E denotes risk-neutral expectation. Based on this choice of µ̄, the drift term −λ(vt)µ̄dt

compensates the jump component (exp(Jt)−1)dNt in the sense that the process
∫ t

0 (exp(Js)−1)dNs−∫ t
0 λ(vs)µ̄ds becomes a martingale under the risk-neutral measure.

A typical example (as in Merton (1976)) is one where the jump size Jt is normally distributed

with mean µJ and variance σ2
J , in which case

µ̄ = exp

(
µJ +

σ2
J

2

)
− 1. (34)

For future reference, we also define

µ+ =
µJ
σJ

+ σJ and µ− =
µJ
σJ
, (35)

and let N denote the standard Normal cumulative distribution function.

Adding jumps to the volatility dynamics, or infinite activity jumps to either returns or volatility

dynamics, has the potential to improve the fit and realism of the model even further but would

substantially alter the approach we employ to derive the IV expansion. So for now we consider only

the case of jumps in returns and leave these further extensions to future work.

7.1 The effect of jumps on the implied volatility expansion

Following the same analysis as in Section 2, it is straightforward to see that the IV Σ remains as in

the continuous model a trivariate function of τ, k, and vt in the form given by (5). A generalization

of the expansion (7) of the IV surface Σ(τ, k, vt) to the case of jumps will now incorporate the square

root of time-to-maturity
√
τ , as well as possibly its negative powers

Σ(J,L(J))(τ, k, vt) =

J∑
j=0

Lj∑
i=min(0,1−j)

ϕ(i,j)(vt)τ
i
2kj , (36)
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where J and L(J) = (L0, L1, · · · , LJ) with Lj ≥ min(0, 1− j) are integers. Expansion (36) includes

negative powers of
√
τ if the lowest power min(0, 1− J) of

√
τ in the double summation is less than

or equal to −1, i.e., if J ≥ 2. With the presence of jumps in return, the away-from-the-money IV

will possibly explode to infinity as the time-to-maturity shrinks to zero: this limiting behavior was

noted by Carr and Wu (2003), who used this divergence to construct a test for the presence of jumps

in the data, and by Andersen and Lipton (2013).

We show in Appendix B that with Normally distributed jumps, the (3, (2, 1, 0,−2))th order

expansion of (36) is given by

Σ(3,(2,1,0,−2))(τ, k, vt) = ϕ(0,0)(vt) + ϕ(1,0)(vt)τ
1
2 + ϕ(2,0)(vt)τ + ϕ(0,1)(vt)k + ϕ(1,1)(vt)τ

1
2k

+ ϕ(−1,2)(vt)τ
− 1

2k2 + ϕ(0,2)(vt)k
2 + ϕ(−2,3)(vt)τ

−1k3,

where the (0, 0)th order term ϕ(0,0)(vt) coincides with the spot volatility vt, and the closed-form

formulae of all other terms are given by

ϕ(−1,2)(vt) =
λ(vt)

√
π

2
√

2v2
t

(−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)), ϕ(−2,3)(vt) =
λ(vt)µ̄

3v2
t

, (37a)

ϕ(0,1)(vt) =
1

2vt
[2λ(vt)µ̄+ γ(vt)], ϕ

(1,0)(vt) = 2v2
tϕ

(−1,2)(vt), (37b)

and

ϕ(1,1)(vt) =

√
πλ(vt)

2
√

2v2
t

[2(r − d)µ̄+ 2(µ̄+ 1)N (µ+) (2(d− r)− v2
t ) + µ̄v2

t + 2v2
t

− 2N (µ−) (2(d− r) + v2
t )], (37c)

ϕ(0,2)(vt) =
1

12v3
t

[−3γ(vt)
2 + 2vtγ(vt)γ

′(vt)− 3πλ(vt)
2(µ̄− 2(µ̄+ 1)N (µ+) + 2N (µ−))2

+ 2η(vt)
2 + 6λ(vt)(µ̄ (2(d− r)− γ(vt))− 2(µ̄+ 2)v2

t )], (37d)

as well as

ϕ(2,0)(vt) =
1

24vt
[6v2

t γ(vt) + 2η(vt)
2 + 12λ(vt)(µ̄(2(d− r) + γ(vt))− (µ̄+ 2)v2

t ) + 3γ(vt)
2

+ 12(d− r)γ(vt) + 2vt(6µ(vt)− 2γ(vt)
(
3µ̄λ′(vt) + γ′(vt)

)
) + 12µ̄2λ(vt)

2]. (37e)

Note that if we set the jump intensity function λ(v) to zero, the expansion (36) reduces to

the expansion (7) under the continuous SV model: under the model (1a)–(1b), the expansion term

ϕ(i,j)(v) is identically zero for any negative or odd integer i and the expansion term ϕ(i,j)(v) coincides

with σ(i/2,j)(v) for any nonnegative even integer i.

7.2 Example: The Merton jump-diffusion model

In the special case of the jump-diffusion model of Merton (1976):

dSt
St−

= (r − d− λµ̄)dt+ v0dWt + (exp(Jt)− 1)dNt,
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where λ represents a constant jump intensity and v0 a constant volatility. We obtain expansion (36)

under this model simply by letting the SV components be zero and let the jump intensity function

be the constant λ, i.e.,

vt = v0 and λ(vt) = λ. (38)

The expansion terms ϕ(0,1)(vt), ϕ
(−1,2)(vt), and ϕ(1,1)(vt) reduce to

ϕ(0,1)(v0) =
λµ̄

v0
, ϕ(−1,2)(v0) =

λ
√
π

2
√

2v2
0

(−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)),

and

ϕ(1,1)(v0) =

√
πλ

2
√

2v2
0

[2(r − d)µ̄+ 2(µ̄+ 1)N (µ+) (2(d− r)− v2
0) + µ̄v2

0 + 2v2
0

− 2N (µ−) (2(d− r) + v2
0)],

from the general formulae provided in (37b), (37a), and (37c), respectively.

7.3 From implied volatility to stochastic volatility and jumps

Returning to the general model, the terms ϕ(i,j) correspond to at-the-money IV shape characteristics

or combinations thereof, as the time-to-maturity shrinks to zero, up to time scalings. For instance,

the expansion terms ϕ(0,0)(vt), ϕ
(−2,3)(vt), ϕ

(0,1)(vt), ϕ
(1,1)(vt), and ϕ(−1,2)(vt) satisfy

ϕ(0,0)(vt) = lim
τ→0

Σ(τ, 0, vt), ϕ
(−2,3)(vt) = lim

τ→0

τ

6

∂3Σ

∂k3
(τ, 0, vt), ϕ

(0,1)(vt) = lim
τ→0

∂Σ

∂k
(τ, 0, vt), (39a)

ϕ(1,1)(vt) = lim
τ→0

2
√
τ
∂2Σ

∂τ∂k
(τ, 0, vt), ϕ

(−1,2)(vt) = lim
τ→0

√
τ

2

∂2Σ

∂k2
(τ, 0, vt), (39b)

while the expansion terms ϕ(0,2)(vt) and ϕ(2,0)(vt) satisfy

ϕ(0,2)(vt) = lim
τ→0

(
1

2

∂2Σ

∂k2
(τ, 0, vt) + τ

∂3Σ

∂k2∂τ
(τ, 0, vt)

)
, (39c)

and

ϕ(2,0)(vt) = lim
τ→0

(
∂Σ

∂τ
(τ, 0, vt) + 2τ

∂2Σ

∂τ2
(τ, 0, vt)

)
. (39d)

Formulae (39a)–(39d) hinge on the univariate expansions of at-the-money shape characteristics

∂i+jΣ(τ, 0, vt)/∂τ
i∂kj with respect to

√
τ , while these expansions can be obtained simply by dif-

ferentiating both sides of bivariate expansion (36) i times with respect to τ and j times with respect

to k, and then set k to zero. We provide the details for these calculations at the end of Appendix B.

The following result then generalizes Theorem 1 to the case where jumps are present. It establishes

that the coefficient functions µ(·), γ(·), η(·), and λ(·), as well as the jump size parameters µJ and σJ ,

can be recovered explicitly in terms of the shape characteristics (6) of the IV surface, or equivalently

in terms of the relevant coefficients ϕ(i,j):
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Theorem 2. The jump size parameters µJ and σJ of the model (33a)–(33b) can be recovered by the

following coupled algebraic equations

µ̄+ 2− 2(µ̄+ 1)N (µ+)− 2N (µ−)

−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)
=

1

ϕ(0,0)(vt)2

[
ϕ(1,1)(vt)

ϕ(−1,2)(vt)
+ 2(r − d)

]
(40a)

and √
2µ̄

3
√
π[−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)]

=
ϕ(−2,3)(vt)

ϕ(−1,2)(vt)
. (40b)

The coefficient functions λ(·), γ(·), η(·), and µ(·) can be recovered in closed form as

λ(vt) =

√
2ϕ(0,0)(vt)

2ϕ(−1,2)(vt)√
π[−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)]

, (40c)

γ(vt) = 2ϕ(0,0)(vt)ϕ
(0,1)(vt)− 2λ(vt)µ̄, (40d)

and

η(vt) =

[
6ϕ(0,0)(vt)

3ϕ(0,2)(vt)− ϕ(0,0)(vt)γ(vt)γ
′(vt) +

3

2
πλ(vt)

2(µ̄− 2(µ̄+ 1)N (µ+)

+2N (µ−))2 +
3

2
γ(vt)

2 + 3λ(vt)(2µ̄(r − d) + (µ̄+ 2)ϕ(0,0)(vt)
2 + µ̄γ(vt))

] 1
2

, (40e)

as well as

µ(vt) =
1

12ϕ(0,0)(vt)
[24ϕ(0,0)(vt)ϕ

(2,0)(vt)− 6ϕ(0,0)(vt)
2γ(vt)− 2η(vt)

2 − 12λ(vt)

× (µ̄(2(d− r) + γ(vt))− (µ̄+ 2)ϕ(0,0)(vt)
2)− 12(d− r)γ(vt)− 3γ(vt)

2

− 12µ̄2λ(vt)
2 + 4ϕ(0,0)(vt)γ(vt)

(
3µ̄λ′(vt) + γ′(vt)

)
]. (40f)

Equations (40a)–(40f) constitute a complete mapping from the expansion terms ϕ(i,j)(vt) of the

IV surface to the specification of the SV model (33a)–(33b).

Here is how the jump size parameters µJ and σJ are determined from the IV surface. By assem-

bling the algebraic equation system (40a)–(40b) and the geometric interpretations of the involved

expansion terms ϕ(0,0), ϕ(−2,3), ϕ(1,1), and ϕ(−1,2) provided in (39a)–(39b), we obtain the following

mapping from the shape characteristics (on the right hand side) to the jump parameters µJ and σJ

(on the left hand side):

µ̄+ 2− 2(µ̄+ 1)N (µ+)− 2N (µ−)

−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)
=

1

lim
τ→0

Σ(τ, 0, vt)2

 lim
τ→0

2
√
τ ∂2Σ
∂τ∂k (τ, 0, vt)

lim
τ→0

√
τ

2
∂2Σ
∂k2 (τ, 0, vt)

− 2(d− r)

 (41a)

and
√

2µ̄

3
√
π[−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)]

=
lim
τ→0

τ
6
∂3Σ
∂k3 (τ, 0, vt)

lim
τ→0

√
τ

2
∂2Σ
∂k2 (τ, 0, vt)

, (41b)
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where we recall that µ̄, µ+, and µ− are deterministic functions of µJ and σJ defined in (34) and

(35). According to these equations, one needs various at-the-money IV shape characteristics in both

log-moneyness and time-to-maturity dimensions to pin down µJ and σJ , without requiring any prior

identification of any of the coefficient functions λ(·), µ(·), γ(·), or η(·). In particular, it deserves

noting that the third order derivative ∂3Σ/∂k3 plays a crucial role. This is somewhat unfortunate

from an empirical perspective as it implies that the jump size parameters µJ and σJ depend on a

higher order structure of the IV surface that will be difficult to estimate precisely in the absence of

large amounts of high quality options data.

The stochastic intensity function λ(vt) is characterized by:

λ(vt) =

√
2 lim
τ→0

Σ(τ, 0, vt)
2 · lim

τ→0

√
τ

2
∂2Σ
∂k2 (τ, 0, vt)

√
π[−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)]

. (42)

So the short-maturity at-the-money IV convexity ∂2Σ(τ, 0, vt)/∂k
2 is involved in determining the

stochastic intensity function λ(vt) but not any third order characteristics, except of course that

those were already needed to identify µ̄, µ+, and µ−, which enter (42). In the continuous case,

the at-the-money convexity is finite as the time-to-maturity shrinks to zero, since equations (8) and

(6) imply that limτ→0 ∂
2Σ(τ, 0, vt)/∂k

2 = 2σ(0,2)(vt). By contrast, under the discontinuous model,

the convexity ∂2Σ(τ, 0, vt)/∂k
2 explodes to infinity as the time-to-maturity shrinks to zero, since

the last equation in (39b) directly implies that ∂2Σ(τ, 0, vt)/∂k
2 ∼ 2ϕ(−1,2)(vt)/

√
τ as τ → 0 with

ϕ(−1,2)(vt) finite. The formula (42) remains valid in the limiting case where the intensity λ(vt) tends

to zero, i.e., the jumps degenerate. This is because the convexity behaves in that case according to

limτ→0
√
τ∂2Σ(τ, 0, vt)/∂k

2 = 0, which obviously results in the right hand side of (42) tending to

zero.

The volatility function γ(vt) and η(vt) and the drift function µ(vt) are all affected by the presence

of jumps. Compared to the continuous case, the third order mixed partial derivative ∂3Σ/∂k2∂τ

(resp. term-structure slope ∂Σ/∂τ and term-structure convexity ∂2Σ/∂τ2) participate in determining

the volatility function η(vt) (resp. the drift function µ(vt).) By contrast in the continuous case, the

term structure slope ∂Σ/∂τ is the only IV characteristic along the term-structure dimension that

matters.

Equations (41a), (41b), and (42) (equivalently, (40a)–(40c) in Theorem 2) apply to the jump-

diffusion model of Merton (1976), by plugging in the specification assumptions (38). One is able to

identify all the model components, i.e., the constant volatility v0, intensity λ, as well as jump size

parameters µJ and σJ . Combining the following equations

λµ̄

v0
= lim

τ→0

∂Σ

∂k
(τ, 0, vt),

λ
√
π

2
√

2v2
0

(−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)) = lim
τ→0

√
τ

2

∂2Σ

∂k2
(τ, 0, vt),

√
πλ

2
√

2v2
0

[2(r − d)µ̄+ (µ̄+ 2)v2
0 + 2(µ̄+ 1)N (µ+) (2(d− r)− v2

0)− 2N (µ−) (2(d− r) + v2
0)]
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= lim
τ→0

2
√
τ
∂2Σ

∂τ∂k
(τ, 0, vt)

with the first equation in (39a), i.e., v0 = limτ→0 Σ(τ, 0, v0), we can identify the parameters of the

Merton model v0, λ, µJ , and σJ , given observations on the following four observable short-maturity

IV shape characteristics – at-the-money level Σ, slope ∂Σ/∂k, convexity ∂2Σ/∂k2, and the mixed

slope ∂2Σ/∂τ∂k, all evaluated at (τ, 0, v0). If employing equation (41b) instead, the much less easily

observable third order shape characteristic ∂3Σ/∂k3 would become necessary.

7.4 Implied stochastic volatility models with jumps

The analysis in Section 7.3 provides a theoretical foundation for constructing parametric and non-

parametric implied stochastic volatility models with jumps. In practice, to construct a parametric

model, based on the closed-form formulae for the expansion terms ϕ(i,j), we can use the moment

conditions

E[g(i,j)(vl∆; θ0)] = 0, with g(i,j)(vl∆; θ) = [ϕ(i,j)]data
l − [ϕ(i,j)(vl∆; θ)]model,

where [ϕ(i,j)]data
l denotes the data of ϕ(i,j)(vl∆). Then apply the GMM estimation approach proposed

in Section 3 to estimate the parameters θ.

To construct a nonparametric model, we can in principle estimate the jump size parameters µJ

and σJ before estimating the coefficient functions λ(·), µ(·), γ(·), and η(·) as discussed. Indeed, the

estimators of µJ and σJ can be obtained by the two (exactly identified) conditions as the sample

analogs of algebraic equations (40a) and (40b)

µ̄+ 2− 2(µ̄+ 1)N (µ+)− 2N (µ−)

−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)
=

1

n

n∑
l=1

1

[ϕ(0,0)]data
l

(
[ϕ(1,1)]data

l

[ϕ(−1,2)]data
l

+ 2(r − d)

)
,

and √
2µ̄

3
√
π[−µ̄+ 2(µ̄+ 1)N (µ+)− 2N (µ−)]

=
1

n

n∑
l=1

[ϕ(−2,3)]data
l

[ϕ(−1,2)]data
l

.

Then, regarding the estimators of jump size parameters as inputs, equations (40c)–(40f) allow us to

estimate coefficient functions λ(·), γ(·), η(·), and µ(·) one after another iteratively, by following a

similar approach proposed in Section 4 for constructing a nonparametric SV model without jumps.

7.5 Empirical challenges when jumps are present in the model

So, we have shown that it is possible in theory to imply a SV model with jumps from the shape

characteristics of the IV surface. However, given the current liquidity of options markets and resulting

availability of options data, one would encounter significant practical challenges when implementing
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the above strategy. As we did in the continuous case, it is natural to interpret the expansion (36) as

the following regression

Σdata(τ
(m)
l , k

(m)
l ) =

J∑
j=0

Lj∑
i=min(0,1−j)

β
(i,j)
l (τ

(m)
l )

i
2kj + ε

(m)
l , for m = 1, 2, . . . , nl, (44)

and the estimator of the coefficient β
(i,j)
l serves as the data [ϕ(i,j)]data

l .

Similar to the case for regression (16), the choice of the orders J, L0, L1, . . . , LJ and the regions

of IV surfaces data employed in regression (44) should strike a balance between, on the one hand,

the accuracy of the expansion Σ(J,L(J)) and on the other hand, over-fitting the regression to the IV

data. Most importantly, the presence of jumps necessitates the estimation of third order character-

istics of the IV surface, which in our experience is effectively impossible to do accurately given the

limitations of the data currently available. A substantially denser set of observations on option prices

or implied volatilities would be necessary to accurately estimate third order derivatives without the

error introduced by the strike and maturity surface interpolation implicit in (44). Furthermore, the

divergence of the IV surface due to the presence of negative powers of τ also requires very short

maturity options to be accurately observed (as in Carr and Wu (2003)’s test for the presence of

jumps in options data); such data can be affected by trading patterns specific to options with, e.g.,

time-to-maturity τ less than one week, and log-moneyness k within ±0.1v
√
τ , where v represents the

instantaneous volatility. This makes inferring the desired data [ϕ(i,j)]data
l from the IV surface and

the subsequent procedures for constructing implied stochastic volatility models substantially more

difficult since we do not need to just identify the divergence as in Carr and Wu (2003) but also

estimate higher order coefficients.

8 Conclusions and future directions

We proposed to construct implied stochastic volatility models to be consistent with observed shape

characteristics of the implied volatility market data. In the construction of a parametric model, all

parameters are estimated in one pass, regardless of how they get involved in expansion terms. In the

construction of a nonparametric model, the coefficient functions are estimated one after another it-

eratively, based on the closed-form relationships we derived. At least in principle, implied stochastic

volatility models in higher dimensions can be constructed using the same principle, although a bivari-

ate nonparametric implied stochastic volatility model, as we considered and empirically illustrated,

is flexible enough in terms of fitting the observable and practically useful shape characteristics of the

implied volatility surface (the level, slope and convexity along the moneyness dimension, as well as

the slope along the term-structure dimension.)

When jumps are introduced to the model, we showed that the same ideas continue to work in

principle and that a full characterization of the stochastic volatility model can still be obtained in
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closed form, at least for models with jumps only in the returns dynamics. However, higher order shape

characteristics become necessary, whose estimation require substantially denser options observations

in both time and moneyness than is currently available, even though options with shorter maturities,

such as weekly, have recently become more liquid. Adding jumps to the volatility dynamics, or infinite

activity jumps to either returns or volatility dynamics, would substantially alter the approach we

employ to derive the implied volatility expansion as a tool, and require in practice more accurate

and delicate shape characteristics for fully recovering the model components. We intend to pursue

this line of inquiry in future research.
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Appendix

Appendix A Implied volatility expansion for continuous models

In this appendix, we sketch on how to derive the IV expansion terms σ(i,j) in (7) in closed form for

the continuous SV model (1a)–(1b). To simplify notations, we assume St = s and vt = v at time

t. The main idea hinges on expanding the both sides of identity (4) with respect to the square root

of time-to-maturity ε =
√
τ and log-moneyness k and then matching expansion terms of the same

orders. Thus, as an indispensable preparation, we propose the following (J,L(J))th order expansion

of P̄ (τ, k, vt) introduced in (3) and appearing on the right hand side of (4):

P̄ (J,L(J))(ε2, k, v) =

J∑
j=0

Lj∑
i=1−j

p(i,j) (v) εikj , with ε =
√
τ , (A.1)

for any orders J ≥ 0 and Lj ≥ 1− j, j = 0, 1, . . . , J. The coefficients p(i,j) can be calculated explicitly

by following Li (2014), in which the option price P (ε2, k, s, v) admits a pseudo univariate expansion

with respect to ε with closed-form expansion terms depending on both ε and k. The bivariate

expansion (A.1) follows from taking s = 1 in this univariate expansion and further expanding the

coefficients with respect to k and ε.

Now, based on the bivariate expansion (A.1) of P̄ (τ, k, vt), which appears on the right hand side

of (4), in what follows, we accordingly expand the composite function P̄BS(τ, k,Σ(τ, k, v)) on the left

hand side. By matching the expansion term on the both sides, we establish a set of iterations and

solve the expansion terms σ(i,j) recursively.

We start from the following expansion of at-the-money IV Σ(ε2, 0, v) with respect to ε :

Σ(L0)(ε2, 0, v) =

L0∑
i=0

σ(i,0)(v)ε2i, (A.2)

which is obtained by setting k = 0 in the bivariate expansion (7). According to Durrleman (2008),

Σ(ε2, 0, v) converges to the instantaneous SV of the asset price vt, as the time-to-maturity τ = ε2

approaches to zero. Thus, σ(0,0)(v) = v. By taking σ(0,0)(v) as the initial input, all other expansion

terms can be solved recursively.

To compute the expansion terms σ(i,0), we apply the at-the-money condition k = 0 on the both

sides of (4) to obtain

P̄ (ε2, 0, v) = P̄BS(ε2, 0,Σ(ε2, 0, v)). (A.3)

Expanding the both sides of (A.3) with respect to ε and matching the coefficients, we can obtain

a system of equations. The closed-form formulae of expansion terms σ(i,0) follows by solving the

equations recursively. Indeed, for the left hand side of (A.3), the expansion of P̄ (ε2, 0, v) with
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respect to ε can be obtained from (A.1) by setting k = 0, i.e.,

P̄ (L0)(ε2, 0, v) =

L0∑
l=0

p(l,0) (v) εl. (A.4)

For the right hand side of (A.3), the expansion of P̄BS(ε2, 0,Σ(ε2, 0, v)) with respect to ε follows

by combining the expansion of the function P̄BS(ε2, 0, σ), which is obtained by expanding the ex-

plicit formula of P̄BS(ε2, 0, σ), and the expansion of at-the-money IV Σ(ε2, 0, v), which is pro-

posed in (A.2) with the undetermined expansion terms σ(i,0). Then, the closed-form expansion of

P̄BS(ε2, 0,Σ(ε2, 0, v)) is in the following form

P̄
(J)
BS (ε2, 0,Σ(ε2, 0, v)) =

J∑
l=1

p̃(l,0)(v)εl, (A.5)

for any integer J ≥ 1. In particular, for any odd integer l ≥ 3, the expansion term p̃(l,0) by computa-

tion consists of IV expansion terms σ(i,0) for all i ≤ (l−1)/2. Matching the coefficients of expansions

(A.5) and (A.4) yields the following system of equations

p(l,0)(v) = p̃(l,0)(v), for any odd integer l ≥ 1.

For any integer i ≥ 1, the closed-form formula of the expansion term σ(i,0)(v) follows from solving

the above equation with l = 2i+ 1.

Finally, to compute the expansion terms σ(i,j) for j ≥ 1, we resort to the following identity

∂j

∂kj
P̄ (ε2, 0, v) = fj(ε, v), (A.6)

which is obtained from differentiating the identity (4) j times with respect to k and then applying

the at-the-money condition k = 0. Here, the function fj is defined by

fj(ε, v) =
∑

0≤m1≤m2≤j

(
j

m2

)
∂j−m2+m1P̄BS

∂kj−m2∂σm1
(ε2, 0,Σ(ε2, 0, v))G(m1,m2)(ε, v), (A.7)

where the nonnegative integers m1 and m2 satisfy that m1 = 0 if and only if m2 = 0. The function

G(m1,m2) is defined by G(0,0)(ε, v) = 1 and

G(m1,m2)(ε, v) =
∑

l∈Sm1,m2

m2!

R (l)

m1∏
`=1

1

i`!

∂i`Σ

∂ki`
(ε2, 0, v), (A.8)

for 1 ≤ m1 ≤ m2. Here, the integer index set Sm1,m2 is given by

Sm1,m2 = {(i1, i2, · · · , im1) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ im1 ,
∑m1

`=1i` = m2}, (A.9)

and the function R (l) is a constant defined by the product of factorials of the repeating times

of distinct nonzero entries appearing for more than once in index l. For example, in index l =
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(1, 1, 2, 2, 2), distinct entries 1 and 2 appear twice and thrice, respectively. Then, the constant

R (l) is calculated as 2!× 3! = 24. Similar to the previous case of j = 0, by expanding the both sides

of (A.6) with respect to ε and matching the coefficients, we can obtain a system of equations for

solving the expansion terms σ(i,j)(v) recursively.

Indeed, the expansion of ∂jP̄ (ε2, 0, v)/∂kj on left hand side of (A.6) is

∂jP̄ (Lj)

∂kj
(ε2, 0, v) =

Lj∑
i=1−j

j!p(i,j) (v) εi, (A.10)

which is obtained from differentiating expansion (A.1) j times with respect to k and then setting

k = 0. According to the definition (A.7), the expansion of the function fj on the right hand side of

(A.6) hinges on the expansions of two types of ingredients

∂j−m2+m1P̄BS

∂kj−m2∂σm1
(ε2, 0,Σ(ε2, 0, v)) and G(m1,m2)(ε, v). (A.11)

As to the first ingredient, its expansion can be obtained by combining the expansions of the Black-

Scholes sensitivities ∂j−m2+m1P̄BS(ε2, 0, σ)/∂kj−m2∂σm1 , which is obtained based on the explicit

formula of P̄BS, and the expansion of at-the-money IV Σ(ε2, 0, v), which is explicitly computed from

the preceding iteration for j = 0. By combining these two types of expansions, we obtain the Jth

order expansion of the first ingredient in (A.11) as

∂j−m2+m1P̄
(J)
BS

∂kj−m2∂σm1
(ε2, 0,Σ(ε2, 0, v)) =

J∑
l=1−j+m2

H
(j−m2)
l,m1

εl, (A.12)

for any integer order J ≥ 1− j + m2, where the expansion terms H
(j−m2)
l,m1

consist of various Black-

Scholes sensitivities and at-the-money IV expansion terms σ(i,0).

To obtain the expansion of the second ingredient G(m1,m2)(ε, v) in (A.11), according to its defi-

nition (A.8), it suffices to combine the expansions of various at-the-money IV shape characteristics

∂i`Σ(ε2, 0, v)/∂ki` , while the expansion of ∂i`Σ(ε2, 0, v)/∂ki` follows

∂i`Σ(Li`
)

∂ki`
(ε2, 0, v) =

Li∑̀
l=0

i`!σ
(l,i`)(v)ε2l,

by differentiating (7) i` times with respect to k and then setting k = 0. Then, the function G(m1,m2)

admits a Jth order expansion in the form

G(m1,m2)(ε, v) =

J∑
l=0

G
(m1,m2)
l ε2l, (A.13)

for any integer order J ≥ 0. Here, the expansion term G
(m1,m2)
l is defined according to

G
(m1,m2)
l =

∑
l∈Sm1,m2 , v∈Tl,l

m2!

R (l)

m1∏
`=1

σ(v`,i`)(v),
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for any integers m2 ≥ m1 ≥ 1 and l ≥ 0, with the integer index set Sm1,m2 given in (A.9) and the

function R (l) provided right after (A.9). Moreover, for any index l ∈ Sm1,m2 , the integer index set

Tl,l is defined by

Tl,l = {v = (v1, v2, · · · , vm1) : v1 + · · ·+ vm1 = l and v` ≥ 0, for ` = 1, 2, . . . ,m1} .

Based on the expansions (A.12) and (A.13), it follows from the definition (A.7) that the function

fj(ε, v) admits the following Jth order expansion

f
(J)
j (ε, v) =

J∑
l=1−j

p̃(l,j)(v)εl, (A.14)

for any integer J ≥ 1− j, where the expansion term p̃(l,j) satisfies

p̃(l,j)(v) =
∑

0≤m1≤m2≤j

(
j

m2

) ∑
l1+2l2=l, l1≥1−j+m2, l2≥0

H
(j−m2)
l1,m1

G
(m1,m2)
l2

,

for any integer l ≥ 1− j. In particular, for any odd integer l ≥ 1, the expansion term p̃(l,j)(v) consists

of IV expansion terms σ(i,m) for all 0 ≤ m ≤ j and 0 ≤ i ≤ (l − 1)/2 + bj −mc /2, where the

notation bac represents the integer part of any arbitrary real number a. By matching the coefficients

of expansions (A.14) and (A.10), we obtain the following system of equations

j!p(l,j)(v) = p̃(l,j)(v), for any integer l ≥ 1− j.

For any integer i ≥ 1, the closed-form formula of the expansion term σ(i,j)(v) follows from solving

the above equation with l = 2i+ 1.

Appendix B Implied volatility expansion for models with jumps

Similar to the derivation for the continuous case, the expansion terms ϕ(i,j) can be solved by iter-

ations. These iterations can be obtained by expanding the both sides of identity (4) with respect

to the square root of time-to-maturity ε =
√
τ and log-moneyness k and then matching expansion

terms of the same orders. Solving these matched equations leads to the desired iterations. Thus,

by omitting the similar arguments, it suffices to the following indispensable ingredient for complet-

ing the derivation: Under the general SV model with jumps (33a)–(33b), we propose the following

closed-form bivariate expansion of P̄ (τ, k, vt) introduced in (3) and appearing on the right hand side

of (4):

P̄ (J,L(J))(ε2, k, v) =
J∑
j=0

Lj∑
i=1−j

p̄(i,j) (v) εikj , with ε =
√
τ ,

for any orders J ≥ 0 and Lj ≥ 1 − j, j = 0, 1, 2, . . . , J. This expansion generalizes that for the

continuous model (1a)–(1b) provided in (A.1) and can be developed from the following three steps.
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Without loss of generality, by the time-homogeneity property of the model (33a)–(33b), the time

span from t to T can be translated to that from 0 to τ = T − t for simplicity. We assume S0 = s

and v0 = v.

Step 1 – Representing P̄ (τ, k, v) under an auxiliary measure: We will rewrite the expectation

representation of P̄ (τ, k, v) in (3) under an auxiliary probability measure, under which the expec-

tation becomes easier to handle. We denote by Q the assumed risk-neutral measure and denote by

Ft the filtration generated by the process (St, vt)
>. The new probability measure Q̃ is induced by a

Radon-Nikodým derivative Λt according to

dQ
dQ̃

∣∣∣∣
Ft

= Λt, with Λt defined as Λt =

(
Nt∏
i=1

λ(vτi)

)
exp

{
t−

∫ t

0
λ(vs)ds

}
, (B.1)

where τi denotes the arrival time of the ith jump, i.e., τi = inf{t ≥ 0 : Nt = i}; in particular, Λ0 = 1.

According to Theorem T3 in Chapter VI of Brémaud (1981), Nt is a Poisson process with constant

jump intensity 1 under the measure Q̃. Changing the measure from Q to Q̃ yields the following

equivalent expectation representation of P̄ (τ, k, v):

P̄ (τ, k, v) = e−rτ Ẽ
[
Λτ max

(
ek − Sτ

s
, 0

)]
,

where Ẽ represents the expectation under the measure Q̃. Then, by conditioning on the number of

jumps between 0 and τ, we reformulate P̄ (τ, k, vt) as the following summation form

P̄ (τ, k, v) =
∞∑
`=0

Q̃(Nτ = `)P̄`(τ, k, v), with P̄`(τ, k, v) = Ẽ(`)

[
Λτ max

(
ek − Sτ

s
, 0

)]
, (B.2)

where the multiplier Q̃(Nτ = `), as the probability of Nτ = ` under the measure Q̃, can be ex-

plicitly calculated as τ `e−τ/`!, and the notation Ẽ(`)[·] serves as the abbreviation of the conditional

expectation Ẽ[·|Nτ = `].

According to the relation (B.2), to expand P̄ , it suffices to multiply the expansion of Q̃(Nτ =

`) = τ `e−τ/`! with respect to τ, which is trivial, and the expansion of conditional expectation P̄` with

respect to ε =
√
τ and k for any ` ≥ 0. To expand P̄` for ` = 0, in the beginning of Step 2, we propose

a decomposition of Λτ and Sτ . Then, based on this decomposition, we apply the method proposed in

Li (2014) and develop a pseudo expansion of P̄0 with respect to ε with coefficients depending on both

ε and k. The desired bivariate expansion of P̄0 follows from further expanding those coefficients with

respect to k and ε. To expand P̄` for ` ≥ 1, based on the decomposition of Λτ and Sτ introduced in

Step 2, we apply the operator-based expansion discussed in Aı̈t-Sahalia (2002) to obtain the desired

result in Step 3.

Step 2 – Expanding the conditional expectation P̄` in (B.2) for ` = 0: It follows from the dynamics

(33a) that the underlying asset price Su admits the following decomposition form

Su = sScuS
J
u , (B.3)
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where Scu and SJu are the continuous and jump components of Su/s given by

Scu = exp

{∫ u

0

(
r − d− λ(vt)µ̄−

1

2
v2
t

)
dt+

∫ u

0
vtdW1t

}
and SJu = exp

{
Nu∑
i=1

Jτi

}
, (B.4)

respectively. Likewise, the Radon-Nikodým derivative Λu by definition (B.1) is decomposed as

Λu = ΛcuΛJu , (B.5)

with the continuous component Λcu and jump component ΛJu given by

Λcu = exp

{
u−

∫ u

0
λ(vt)dt

}
and ΛJu =

Nu∏
i=1

λ(vτi), (B.6)

respectively. Apparently, the continuous components Scu and Λcu satisfy

dScu
Scu

= (r − d− λ(vu)µ̄)du+ vudWu, S
c
0 = 1, (B.7)

and

dΛcu = (1− λ(vu))Λcudu, Λc0 = Λ0 = 1, (B.8)

respectively, with the volatility vu governed by (33b).

In the case of ` = 0, the jump components in the decompositions (B.3) and (B.5) are disabled,

so that the conditional expectation P̄0 in (B.2) simplifies to

P̄0(τ, k, v) = e−rτ Ẽ
[
Λcτ max(ek − Scτ , 0)

]
,

since Sτ = sScτ and Λτ = Λcτ , By regarding Λcτ max
(
ek − Scτ , 0

)
as the payoff function of a derivative

security with the underlying asset (Scτ ,Λ
c
τ ) evolving according to dynamics (B.7), (B.8), and (33b),

we apply the method proposed in Li (2014) and arrive at the following Jth order univariate expansion

of P̄0(τ, k, v):

P̄
(J)
0 (ε2, k, v) = e−rε

2
εv

J∑
l=0

Φ
(l)
0

(
ek − 1

vε

)
εl,

where the coefficients Φ
(l)
0 can be calculated in closed form. The desired bivariate expansion of P̄0

follows by further expanding the coefficients Φ
(l)
0 with respect to k and ε.

Step 3 – Expanding the conditional expectation P̄` in (B.2) for ` ≥ 1: Plugging in the decompo-

sitions (B.3) and (B.5) into (B.2) yields

P̄`(τ, k, v) = Ẽ(`)
[
ΛcτΛJτ max(ek − ScuSJu , 0)

]
.

Conditioning on Λcτ , ΛJτ , and Scτ , we reformulate the above expectation as

P̄`(τ, k, v) = Ẽ(`)[ΛcτΛJτ Ẽ(`)[max(ek − ScuSJu , 0)|Λcτ ,ΛJτ , Scτ ]]. (B.9)
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We note that the component SJτ inside the inner expectation is independent with all the conditioning

arguments Scτ , Λcτ and ΛJτ defined in (B.4), (B.6), and (B.6), respectively, simply because jump sizes

Jτi are assumed to be independent with the asset price Su, the volatility vu, and the Poisson process

Nu for any u ∈ [0, τ ] under the measure Q̃. Consequently, the inner expectation in (B.9) can be

expressed as φ`(k, S
c
τ ) for some function φ` determined by the following integral form

φ`(k, S
c
τ ) = Ẽ(`)[max(ek − ScuSJu , 0)|Λcτ ,ΛJτ , Scτ ] (B.10)

=

∫
J `

max(ek − Scτeu1+u2+···+u`)f(u1)f(u2) · · · f(u`)du1du2 · · · du`, (B.11)

where J and f represent the state space and the probability density function of the jump size Jt,

respectively. The integral (B.11) can be explicitly calculated if, for example, the jump size Jt follows

a normal distribution with mean µJ and variance σ2
J as commonly employed since the breakthrough

invention of the jump-diffusion model by Merton (1976). Under this case, the closed-form formula

of the integral (B.11) is given by

φ`(k, S
c
τ ) = ekN

(
k − logScτ − `µJ√

`σJ

)
− Scτ exp

(
`µJ +

`σ2
J

2

)
N
(
k − logScτ − `µJ√

`σJ
−
√
`σJ

)
.

It follows from (B.9) and (B.10) that

P̄`(τ, k, v) = Ẽ(`)[ΛcτΛJτ φ`(k, S
c
τ )].

By conditioning on the components Scτ and Λcτ , as well as the whole path of the volatility vu for all

u ∈ [0, τ ], denoted by V for simplicity, the law of iterated expectation implies

P̄`(τ, k, v) = Ẽ[Λcτφ`(k, S
c
τ )Ẽ(`)[ΛJτ |Scτ ,Λcτ , V ]]. (B.12)

Plugging in the explicit expression of the jump component ΛJτ given in (B.6), we write the inner

expectation as

Ẽ(`)[ΛJτ |Scτ ,Λcτ , V ] ≡ Ẽ

[∏̀
i=1

λ(vτi)

∣∣∣∣∣Scτ ,Λcτ , V,Nτ = `

]
. (B.13)

Given the conditions spelt in (B.13), the randomness of
∏`
i=1 λ(vτi) solely hinges on those of the

jump arrival times τi. Since Nt follows a Poisson process with constant intensity 1 independent with

Scτ , Λcτ , and V under the measure Q̃, the conditional joint distribution of (τ1, τ2, · · · , τ`) given Scτ ,

Λcτ , V, and Nτ = ` is equivalent to that of (τ1, τ2, · · · , τ`) given Nτ = `, which distributes as the

order statistics of ` independent observations sampled from the uniform distribution on [0, τ ] (see,

e.g., Theorem 2.3 in Chapter 4.2 of Karlin and Taylor (1975).) Then, direct computation leads to

that

Ẽ(`)[ΛJτ |Scτ ,Λcτ , V ] =

(∫ τ

0

1

τ
λ(vu)du

)`
=

(
1− 1

τ
log Λcτ

)`
, (B.14)
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where the second equality follows from the representation of Λcτ in (B.6). Hence, by plugging (B.14)

into (B.12), we simplify P̄`(τ, k, v) in (B.9) to

P̄`(τ, k, v) = Ẽ

[
Λcτφ`(k, S

c
τ )

(
1− 1

τ
log Λcτ

)`]
.

Finally, based on the dynamics of Scu, vu, and Λcu given in (B.7), (33b), and (B.8), respectively,

an application of the operator-based expansion discussed in Aı̈t-Sahalia (2002) to the conditional

expectation P̄`(τ, k, v) yields the Taylor expansion with respect τ = ε2 in the form:

P̄
(J)
` (τ, k, v) =

J∑
l=0

Φ
(l)
` (k)τ l,

for any integer order J ≥ 0, where the expansion terms Φ
(l)
` are in closed form. The desired bivariate

expansion of P̄` follows from further expanding the coefficients Φ
(l)
` (k) with respect to k.

The last part of this Appendix shows the calculations to link the coefficients ϕ(i,j) to the IV

surface shape characteristics in Section 7.3. It follows by setting k = 0 in the bivariate expansion

(36) that

Σ(L0)(τ, 0, vt) =

L0∑
i=0

ϕ(i,0)(vt)τ
i
2 . (B.15)

Differentiating both sides of (36) with respect to k once, twice, or thrice, and then taking k to be

zero, we obtain

∂

∂k
Σ(L1)(τ, 0, vt) =

L1∑
i=0

ϕ(i,1)(vt)τ
i
2 , (B.16)

∂2

∂k2
Σ(L2)(τ, 0, vt) =

L2∑
i=−1

2ϕ(i,2)(vt)τ
i
2 , (B.17)

and

∂3

∂k3
Σ(L3)(τ, 0, vt) =

L3∑
i=−2

6ϕ(i,3)(vt)τ
i
2 .

Equation (B.15) (resp. (B.16)) implies the first (resp. third) equation in (39a) as τ approaches

to zero, i.e., ϕ(0,0)(vt) = limτ→0 Σ(τ, 0, vt) (resp. i.e., ϕ(0,1)(vt) = limτ→0 ∂Σ/∂k(τ, 0, vt).) The rest

of equations listed in (39a)–(39d) hinge on finding the univariate Taylor expansions with respect to
√
τ of the time-scaled shape characteristics or their combinations appearing on the right hand sides

of these equations. Consider (39c). It follows from (B.17) that

1

2

∂2

∂k2
Σ(L2)(τ, 0, vt) =

L2∑
i=−1

ϕ(i,2)(vt)τ
i
2 and τ

∂3

∂k2∂τ
Σ(L2)(τ, 0, vt) =

L2∑
i=−1

iϕ(i,2)(vt)τ
i
2 .
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Adding the above two equations yields

1

2

∂2

∂k2
Σ(L2)(τ, 0, vt) + τ

∂3

∂k2∂τ
Σ(L2)(τ, 0, vt) =

L2∑
i=0

(i+ 1)ϕ(i,2)(vt)τ
i
2 ,

which is a Taylor expansion with leading term ϕ(0,2)(vt) and (39c) follows by letting τ approach zero.
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Exact identification Over identification
Parameter True Bias Std. dev. Bias Std. dev.

κ 3.00 −0.031 0.554 −0.259 0.488

α 0.04 3.21× 10−4 0.0022 0.0012 0.0029

ξ 0.20 0.0021 0.0109 3.53× 10−4 0.0106

ρ −0.70 0.0058 0.0374 0.0017 0.0374

Table 1: Monte Carlo results for parametric implied stochastic volatility model of type (27a)–(27b)

Note: In the fourth and sixth columns, the standard deviation of each parameter is calculated by the finite-

sample standard deviation of estimators based on the 500 simulation trials.

Number Mean Standard deviation
Days-to-expiration [15, 30] (30, 45] (45, 60] [15, 30] (30, 45] (45, 60] [15, 30] (30, 45] (45, 60]
Log-moneyness k

k < 5% 8, 481 22, 275 27, 261 21.92 19.68 19.24 4.68 4.43 4.19
−5% ≤ k ≤ −2.5% 32, 319 24, 598 15, 643 15.38 15.05 15.18 3.35 3.13 3.08
−2.5% ≤ k < 0 40, 983 24, 151 15, 635 12.19 12.69 13.05 3.39 3.36 3.22
0 ≤ k < 2.5% 23, 556 16, 025 10, 392 10.51 10.89 11.27 3.52 3.56 3.52

2.5% ≤ k < 5% 2, 417 3, 015 2, 205 14.10 12.58 11.92 3.50 3.64 3.83
k ≥ 5% 106 269 291 18.87 17.01 15.80 2.21 2.42 2.51
Total 107, 862 90, 333 71, 427 13.59 14.75 15.60 4.66 4.82 4.79

Table 2: Descriptive statistics for the S&P500 index implied volatility data, 2013 – 2017

Note: The sample consists of daily implied volatilities of European options written on the S&P 500 index

covering the period of January 2, 2013 – December 29, 2017. The columns “Mean” and “Standard deviation”

are reported as percentages. The log-moneyness k is defined by k = log(K/St), where K is the exercise strike

of the option and St the spot price of the S&P 500 index.
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Exact identification Over identification
Parameter Estimator Standard error Estimator Standard error

κ 15.2 1.95 13.5 1.64

α 0.023 0.0032 0.022 0.0030

ξ 0.98 0.065 0.77 0.052

ρ −0.619 0.0021 −0.609 0.0038

Table 3: Parametric implied stochastic volatility model of type (27a)–(27b)

Note: In the third and fifth columns, the standard error of each parameter is calculated by the Newey-West

(sample-based) estimator according to (19) and (20). For instance, the standard error of the parameter κ is

given by

√
V̂ −1
11 (θ̂)/n, where V̂ −1

11 represents the (1, 1)th entry of the matrix V̂ −1.
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Figure 1: The implied volatility surface of S&P 500 index’s options on January 3, 2017

Note: This plot represents the IV surface (τ, k) 7−→ Σ(τ, k, vt) on January 3, 2017 for S&P 500 index options.

The two slopes Σ0,1(vt) (log-moneyness slope, or implied volatility smile) and Σ1,0(vt) (term-structure slope)

are approximated and represented as red and blue dashed lines, respectively, with each partial derivative

∂i+jΣ(τ, 0, vt)/∂τ
i∂kj evaluated at τ = 1 month.
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Parameter: κ Parameter: α

Parameter: ξ Parameter: ρ

Figure 2: Histograms of the Newey-West estimators of asymptotic standard deviations for the exactly
identified case

Note: In each panel, the histogram characterizes the distribution of 500 Newey-West (sample-based) estimators

of asymptotic standard deviations. For each simulation trial, the sample-based asymptotic standard deviation

is calculated according to (19) and (20). The red star marks the finite-sample standard deviation of the

corresponding parameter as shown in the fourth column of Table 1.
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Parameter: κ Parameter: α

Parameter: ξ Parameter: ρ

Figure 3: Histograms of the Newey-West estimators of asymptotic standard deviations for the over-
identified case

Note: Except for switching to the over-identified case, all the other settings for these four panels remain the

same as those for producing Figure 2.
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Figure 4: Monte Carlo results for nonparametric implied stochastic volatility model (1a)–(1b)

Note: In each panel, the true function is determined or calculated according to (28). The black solid curve

represents the mean of nonparametric estimators corresponding to the 500 simulation trials. Each point on

the upper (resp. lower) red dashed curve is plotted by vertically upward (resp. downward) shifting the

corresponding one on the black mean curve by a distance equal to twice of the corresponding finite-sample

standard deviation.
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Figure 5: Nonparametric implied stochastic volatility model (1a)–(1b) built from one-trial simulation

Note: In each panel, the true function is determined or calculated according to (28). The black solid curve

represents the one-trial nonparametric estimator. Each point on the upper (resp. lower) red dashed curve is

plotted from vertically upward (resp. downward) shifting the corresponding one on black curve by a distance

equal to twice of the corresponding standard error. Here, the standard error is calculated by the bootstrap

strategy introduced in Section 5.2.
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Figure 6: Histogram of R2 for parametric regressions (32) for individual days across the whole sample
covering the period of January 2, 2013 to December 29, 2017.
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Figure 7: Implied volatility data on January 3, 2017 and the corresponding parametric fitted surface
with regression R2 = 0.9868

Note: The parametric fitted surface is calculated according to bivariate regression (32).
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Figure 8: Histograms for the data of [σ(0,0)]data, [σ(0,1)]data, and [σ(0,2)]data

Note: [σ(0,0)]data, [σ(0,1)]data, and [σ(0,2)]data are the data of expansion terms σ(0,0), σ(0,1), and σ(0,2), respec-

tively. They are prepared from the bivariate regression (32) across the whole sample. In each panel, we plot

a red dashed vertical bar to represent the mean of the corresponding histogram.
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Figure 9: Nonparametric implied stochastic volatility model (1a)–(1b)

Note: In the upper left and middle left panels, the data [µ]data and [η2]data are calculated according to (26)

and (25), respectively. In the upper right panel, the data [−γ]data are simply the opposite numbers of the

data [γ]data, which are calculated according to (22). In all these three panels, the nonparametric estimators

are obtained by local linear regressions according to the method proposed in Section 4. In the middle right

panel, the nonparametric estimator of η follows by taking square root of the estimator of η2. In the lowest

panel, the nonparametric estimator of ρ follows from (31). In all the panels, the standard errors of estimators

are calculated by the bootstrap strategy introduced in Section 5.2.
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Figure 10: Back-check of the fitting performances on expansion terms

Note: In each panel, the data [σ(i,j)]data are obtained from bivariate regression (32), while the fitted expan-

sion terms σ̂(i,j) are obtained from replacing the functions µ, γ, and η, as well as their derivatives by their

nonparametric estimators in the formula of σ(i,j).
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