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Abstract

The importance of units with pervasive impacts on a large number of other units
in a network has become increasingly recognized in the literature. In this paper we
propose a new method to detect such pervasive units by basing our analysis on unit-
specific residual error variances in the context of a standard factor model, subject to
suitable adjustments due to multiple testing. Our proposed method allows us to estimate
and identify pervasive units having neither a priori knowledge of the interconnections
amongst cross-section units nor a short list of candidate units. It is applicable even if the
cross section dimension exceeds the time dimension, and most importantly it could end up
with none of the units selected as pervasive when this is in fact the case. The sequential
multiple testing procedure proposed exhibits satisfactory small-sample performance in
Monte Carlo simulations and compares well relative to existing approaches. We apply
the proposed detection method to sectoral indices of US industrial production, US house
price changes by states, and the rates of change of real GDP and real equity prices across
the world’s largest economies.
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1 Introduction

Detecting the presence of economic agents, whose behavior influences a large number of peers,
has become a relevant issue in several areas of economics. For example, in banking and finance
it is of interest to consider formal ways of identifying whether particular financial institutions
present systemic risks. At times of economic and financial crises it is often of interest to know if
a certain corporation, particularly among financial institutions, is so large and interconnected
that its failure could lead to cascade effects with important consequences for the economy as
a whole. Such units are often referred to as ‘too big to fail’ and their existence is debated in
the press and in public policy forums, although empirical evidence in support of such claims is
often lacking. In cases where information on interconnections across units exist, it is possible
to use a network approach to detect the most influential unit in the network and examine its
degree of dominance. An important example is input-output data used to analyze the role
that individual production units, such as industrial sectors, play in propagating shocks across
the economy. A major recent contribution in this area is by Acemoglu, Carvalho, Ozdaglar,
and Tahbaz-Salehi (2012) who suggest using the shape parameter of a power law assumed
for the degree sequence of a network to measure the extent to which variations in aggregate
volatility are affected by shocks to individual units within the network. Further developments
are provided by Acemoglu, Akcigit, and Kerr (2016) and Acemoglu, Autor, Dorn, Hanson, and
Price (2016). In related work, Pesaran and Yang (2019) propose extremum estimators based on
outdegrees of a network to detect and identify influential units in the network and to estimate
their degrees of pervasiveness.

In cases where information on network connections is not available, it is still possible to
identify individual cross-sections in panel dataset whose behavior has an impact on that of all
other cross-sections, if there is a sufficient number of time series observations (T ) on all cross-
section units (N) in the sample. In this paper we suppose that such time series observations
are available and address the problem of jointly determining the number as well as the identity
of cross-section units in a panel dataset that are influential or pervasive, in the sense that they
influence almost all other cross-section units. From the perspective of economic networks, the
central hub in a star network provides a simple example of a pervasive unit. As noted above,
the concept of pervasive units is closely related to the notion of ‘too big to fail’ often used in
the context of financial and production networks. However, it is important to bear in mind
that the two concepts are not identical. For example, a unit that is too big to fail may become
influential mainly in crisis periods, implying a nonlinear behavior that our linear model may
not be best equipped to handle.

Our approach shares some features with previous contributions on the same subject (see e.g.
Bai and Ng, 2006; Parker and Sul, 2016; Brownlees and Mesters, 2018) but significantly improves
on existing research in a number of respects. First, we allow for the possibility that the data
under consideration does not include any pervasive unit in the first place. This is a leading case
of interest and, in fact, some of our empirical work confirms its practical importance. Secondly,
we do not require a priori information on a potential list of pervasive units or observations on
network linkages. This is a key advantage relative to contributions in the production network
literature which relies on the availability of input-output tables. Third, our detection procedure
can determine pervasive units from a large number of potential candidates, even in the presence
of external common factors that could potentially influence all units (including the pervasive
units). Finally, our procedure applies even if N > T , which is an important consideration in
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practice where in many applications of interest the number of time series observations is limited
either because of unavailability of data or due to structural breaks.

Before proceeding to propose an operational procedure to identify pervasive units, we need
to provide a clear mathematical definition of what we mean by pervasive units, using both
intuitive and mathematical arguments. As a result, we consider intuitive properties that a
pervasive unit should have. As we wish to have a simple structure we choose not to focus on
dynamic models that would potentially allow consideration of various concepts of causation.
Further, such concepts have clear conceptual limitations. Accordingly, using a standard multi-
factor panel data model, we regard a unit as pervasive if it affects a large proportion of other
units in the panel. In other words, any shock that impacts a pervasive unit has to impact a
large proportion of other units. In contrast, for non-pervasive units there can be shocks that
are idiosyncratic and do not affect many other units. Although we do not allow for dynamics,
our model can be extended to allow for shocks to be serially correlated.

A major implication of the existence of pervasive units, as defined above, is that the data can
be represented by a factor model where variation in the pervasive units is perfectly explained
by the true factors. This view on pervasive units reflects the fact that an influential unit can
be viewed as a common factor for all other units in the panel. Consequently, factor estimates
obtained from the dataset will have close to perfect explanatory power for true pervasive units.
Using this result, we consider the residual variance from regressions of individual units on the
factor estimates as a metric that quantifies the explanatory ability of the estimated factors.
Based on ideas from multiple testing we then construct thresholds that determine whether the
residual variance estimated for a given unit is sufficiently small to identify that unit as pervasive.
We find that thresholding residual variances across the units provides a powerful approach with
a number of desirable characteristics and good small sample performance.

A further defining characteristic of our work is to consider refinements that again make
use of multiple testing to allow for the possibility that identified pervasive units may not be
fully pervasive - that is they may only affect a subset of cross-sectional units. This further
distinguishes our work from existing methods which either do not pay much attention to such
weak cross-sectional dependence structures or are unclear about the motivation and nature of
these structures. The use of multiple testing focuses on the possibility that some units selected
as pervasive might only affect a majority of the units in the panel rather than being fully
pervasive with non-zero effects on all units. We feel that local to zero representations of factor
loadings, which are sometimes used in the literature, where the size of the loadings depend on
the sample size and tend to zero as this size rises, are less persuasive as a model for economic
interdependence than the weak dependence formulation that we consider in this paper.

Monte Carlo simulations suggest that our refined thresholding method performs very well
in finite-sample, and most importantly, it reliably detects the absence of pervasive units from a
dataset with many potential candidates. Furthermore, if influential cross section units are part
of the model specification, our detection methodology succeeds in jointly detecting their total
number and their identities. The proposed method also works well even if N is much larger
than T , and unlike other methods proposed in the literature, its false discovery rate is very low
and tends to zero as N and T →∞.

The proposed detection procedure is applied to sectoral indices of U.S. industrial production
(already investigated in the literature), as well as to the rates of change of real GDP and real
equity prices across the world’s largest economies over the period 1979Q2-2016Q4. Unlike
other detection methods proposed in the literature, we do not find convincing evidence that
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there are pervasive sectors within the U.S. industrial production, or that there exist pervasive
economies or equity markets in the global system, once we adequately allow for the presence
of common factors. Finally, we apply the new method to real U.S. house price changes across
the 48 mainland states, and find evidence that New York is pervasive, in contrast to the other
methods that select states such as New Hampshire, Nevada, North Carolina, Maryland and
Virginia (just to mention a few) and not New York as pervasive.

The paper is structured as follows. Section 2 presents a review of the existing literature.
Section 3 provides the main setup of our approach and details our theoretical results. Further
refinements are discussed in Section 5. Sections 6 and 7 present simulation and empirical ev-
idence on the relative performance of our method compared to existing ones. Formal proofs
and additional simulation results are relegated to Appendix A and an online supplement, re-
spectively.

Notation: Generic positive finite constants are denoted by C when large, and c when small.
They can take different values at different instances. →p denotes convergence in probability as
N, T → ∞. λmax (A) and λmin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ‖A‖ and ‖A‖F denote the spectral
and Frobenius norm of matrix A. If {fn}∞n=1 is any real sequence and {gn}∞n=1 is a sequences
of positive real numbers, then fn = O(gn), if there exists C such that |fn| /gn ≤ C for all n.
fn = o(gn) if fn/gn → 0 as n→∞. If {fn}∞n=1 and {gn}∞n=1 are both positive sequences of real
numbers, then fn = 	 (gn) if there exists n0 ≥ 1 and positive finite constants C0 and C1, such
that infn≥n0 (fn/gn) ≥ C0, and supn≥n0

(fn/gn) ≤ C1.

2 Related literature

Asset pricing models have motivated the earliest approaches aimed at determining whether a
given set of observed time series coincides with one of the estimated common factors (principal
components) from a large panel dataset. Bai and Ng (2006) regress each observed candidate
series onto the estimated factors and propose statistics to test the equality between the model
fit from the aforementioned regression and the observed values of a list of (assumed) potential
influential variables. The framework considered by these authors is one where economic theory
reduces the number of potential influential variables to a small, fixed number of economic
indicators that are not part of the large dataset at hand. Consequently, using their framework
to identify pervasive units in large datasets without any means of reducing the number of
candidates is problematic. This pitfall was recognized by Parker and Sul (2016) who provide an
alternative approach to that suggested by Bai and Ng (2006) and consider the identification of
pervasive units in a large dataset as a special case.1 Parker and Sul focus on the idiosyncratic
components of the estimated factor model and identify an observed series as a pervasive unit
if it can replace at least one of the estimated factors in the factor model without introducing
common factors in the idiosyncratic components.2 In order to address multiple testing concerns,
a rule of thumb is suggested to restrict the number of potential pervasive units. However, this
only mitigates the problem rather than providing a full solution. A more general solution is

1In Parker and Sul (2016) a pervasive unit is referred to as the dominant leader.
2Further empirical applications of the Parker and Sul method (in a simpler form) are provided by Gaibulloev,

Sandler, and Sul (2013) and Greenaway-McGrevy, Mark, Sul, and Wu (2018). Soofi-Siavash (2018) also considers
a version of the Parker and Sul method which is applicable to any cross-section unit taken as potentially
pervasive, and provides an application to the industrial sectors in the U.S..
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provided by Brownlees and Mesters (2018), who use the sample concentration matrix of all the
units in the data to identify as pervasive units those units whose concentration matrix column
norms are considerably larger than those of the remaining units.3 Under certain regularity
conditions, Brownlees and Mesters show that their procedure consistently partitions the units
into pervasive and non-pervasive by ordering column norms in descending order and choosing
the maximum ratio between two successive, ordered column norms.

While suggesting a consistent detection procedure without needing to estimate the common
factors in the data, Brownlees and Mesters (2018) require the number of time periods to be
larger than the number of cross-section units (T > N), and assume that there exists at least
one pervasive unit in the data. These two requirements result in considerable restrictions in
empirical practice. First, many datasets, notably those involving aggregate economic indicators,
have a number of cross section units that is approximately as large as the number of time
periods, if not larger. Even if the time dimension of the dataset is sufficiently large, sub-samples
of interest (due to structural breaks) might be too short to allow for a separate investigation.
Second, it is crucial to allow for the possibility that none of the units in the sample at hand is
particularly influential. The relevance of this case is given by recent contributions that track the
effect of sector-specific shocks on aggregate fluctuations. For example, application of a structural
model to data on U.S. industrial production leads Foerster, Sarte, and Watson (2011, p.21) to
conclude that ”[. . . ] linkages alone and uncorrelated sector-specific shocks implies noticeably
less co-movement across sectors than in U.S. data.” Further evidence is given in Pesaran and
Yang (2019) who develop an estimator for the degree of dominance of the most pervasive unit
in a network. Their application on U.S. input-output tables reveals that there is ”[. . . ] some
evidence of sector-specific shock propagation, but [that] such effects do not seem sufficiently
strong and long-lasting [. . . ]” in the sense that the aggregate effect of sectoral shocks vanishes as
the number of sectors in the economy increases. Finally, while the two studies cited above allow
for the absence of pervasive units, they crucially rely on the availability of input-output matrices
as a measure of linkages between cross-sections. Comparable information may not always be
available, thus making it impossible to use the techniques in these studies. By contrast, the
approach proposed in the current paper is applicable to any large dimensional panels without
requiring the presence of a minimum number of pervasive units in the panel.

3 Panel data models with pervasive units

Suppose T time series observations are available on N cross section units denoted by xit,
for i = 1, 2, . . . , N and t = 1, 2, . . . , T . We are interested in determining the number and
identity of pervasive units (if any), in this panel. To define the concept of a pervasive unit,
we propose a mathematical formalization of our intuitive idea that pervasive units are those
for which any shock that impacts them also has to impact a large proportion of other units.
In its most general the idea can be formalized in terms of conditional probability distributions
where conditioning is on general σ-fields that represent information sets. Let (Ω,F , P ) be some
probability space that is rich enough for modelling xit, Let G1 ⊂ F and G2 ⊂ F , be some
σ-fields and, assuming stationarity for xit, let Fi (x|.) denote the conditional distribution of xit,
which, we assume, exists. Then, a unit is pervasive if for all possible G1 ⊂ F and G2 ⊂ F , such

3Brownlees and Mesters (2018) employ the term granular unit to denote a pervasive unit.
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that EP [supx |Fi (x|G1)− Fi (x|G2)|] > 0, we have that

lim
N→∞

1

N

N∑
j=1,j 6=i

EP

[
sup
x
|Fj (x|G1)− Fj (x|G2)|

]
= c,

for some 0 < c <∞, where EP [.] denotes expectation with respect to P . If there exist G1 ⊂ F
and G2 ⊂ F such that EP [supx |Fi (x|G1)− Fi (x|G2)|] > 0, but

lim
N→∞

1

N

N∑
j=1,j 6=i

EP

[
sup
x
|Fj (x|G1)− Fj (x|G2)|

]
= 0,

the unit is not pervasive. This definition becomes clearer if we specialize to the case of con-
ditional expectations, on which we will focus from now. In that case, a unit is pervasive if
for all possible G1 ⊂ F and G2 ⊂ F , such that EP [|E (xit|G1)− E (xit|G2)|] > 0, we have
that limN→∞

1
N

∑N
j=1,j 6=iEP [|E (xjt|G1)− E (xjt|G2)|] = c, for some 0 < c <∞. This basically

states that if there are no shocks that affect xit but do not affect a non-zero proportion of the
other units then xit is pervasive. Later on we shall see that concepts of weak dominance can
be accommodated by, for example, stating that there is 0 < α < 1, such that a unit is weakly
pervasive if, for all possible G1 ⊂ F and G2 ⊂ F , such that EP [|E (xit|G1)− E (xit|G2)|] > 0,
we have that limN→∞

1
Nα

∑N
j=1,j 6=iEP [|E (xjt|G1)− E (xjt|G2)|] = c, for some 0 < c < ∞, and

α < 1.
While this definition is primitive and model free it is not that useful for operationalizing a

procedure that detects the number and identity of pervasive units. So we proceed by specifying
that all cross sectional units can be modeled using unobserved common factors. It will then
be obvious that such a setup conforms to the above definition. More formally, we consider the
following data generating process (DGP)

xat = Ahht + Aggt, (1)

xbt = Baxat + Bggt + ut, (2)

for t = 1, 2, . . . , T , where xat and xbt are m× 1 and n× 1 vectors of observations at time t on
the pervasive and non-pervasive units, respectively. Thus N = m + n. Only the N × 1 vector
xt = (x′at; x′bt)

′ is observed to the researcher and the true number of pervasive units m as well
as their identities are unknown. The partitioning of xt into m pervasive units, followed by n
non-pervasive units is made exclusively for expositional purposes and in general there is no a
priori information about the cross-section indexes of potential pervasive cross-sections.

The m pervasive units, xa,jt, j = 1, 2, ...,m affect the non-pervasive units, xb,it, i = m +
1,m+ 2, ...., N via the n×m matrix of loading coefficients Ba = (ba,ij), where n = N −m. For
xa,jt to be a pervasive unit we must have

N∑
i=m+1

|ba,ij| = 	 (n) , j = 1, 2, ...,m. (3)

In other words, for a unit to be pervasive it must have non-zero effects on almost all other units
in the panel or network. Following Chudik, Pesaran, and Tosetti (2011), we could also consider
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units that are not pervasive but still quite influential. Suppose that there exists an ordering
of the non-pervasive units such that unit xa,jt only affects the non-pervasive units, xb,it, whose
index i ≤ bnαjc, where αj (0 < αj ≤ 1) is an exponent parameter that measures the degree of
the dominance of xa,jt in the panel.4 This requirement can be written equivalently as

N∑
i=m+1

|ba,ij| = 	 (nαj) , for j = 1, 2, ...,m, (4)

which is a natural generalization of (3). The unit xa,jt with αj < 1 can be viewed as a weak
factor, but as argued in Bailey, Kapetanios, and Pesaran (2016) and Bailey, Kapetanios, and
Pesaran (2019), for xa,jt to have pervasive effects on other units we need αj to be reasonably
close to unity. Clearly, the values of αj ≤ 1/2 can be ruled out since for such values, xa,jt
becomes so weak that it loses many of the standard characteristics, associated with factor
variables. In practice we might need to focus on exponents that fall in the range 2/3 < αj ≤ 1
before we can be confident that unit xa,jt has non-negligible impacts on other units in the panel
dataset. In terms of the general definition (4), for all elements of xat to be pervasive it is
required that αj = 1 for j = 1, 2, ...,m, and pervasive units can be regarded as strong factors.
While our theory focuses on αj = 1, j = 1, 2, ...,m, it can be extended to αj ≤ 1, using ideas
in the above cited papers. It is also possible to estimate the exponent αj once the unit xa,jt is
selected as pervasive/influential. However, such extensions are beyond the scope of the present
paper.

The k × 1 vector gt contains common ”external” factors affecting both pervasive and non-
pervasive units via the m × k and the n × k loading matrix Ag and Bg, respectively. The
pervasive units can also be viewed as ”internal” factors. Lastly, the m× 1 vector ht as well as
the n×1 vector ut model stochastic variation that originates in the pervasive and non-pervasive
units, respectively. To simplify the exposition we abstract from deterministic effects such as
intercepts or linear trends and without loss of generality assume that xit have zero means and
finite variances. Define now the p×1 vector ft = (h′t,g

′
t)
′ = (f1t, f2t, . . . , fpt)

′ where p = m+k.5

Using this vector, the pervasive unit model (1)-(2) can be written as a restricted static factor
model, given by

(
xat
xbt

)
=

(
Aa

Ab

)
ft +

(
0
ut

)
= Aft + vt, (5)

where Aa = (Ah,Ag) and Ab = (BaAh, BaAg + Bg). Additionally, denote by ai the i-th row
of A = (A′a,A

′
b)
′. Since a pervasive unit is de facto a common factor, then m ≤ p. It is also

shown in Chudik, Pesaran, and Tosetti (2011), that p must be a fixed integer to ensure that
V ar(xit) is bounded in N . Accordingly, we assume that 0 ≤ m ≤ p < pmax, where pmax is an
upper bound on p.

We shall also make the following assumptions:

Assumption 1

4bac denotes the integer part of a.
5The magnitude of m relative to k is immaterial as long as both are fixed.
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1. ft is a covariance-stationary stochastic process with E (ftf
′
t) = Ip.

2. There exist sufficiently large positive constants C0 and C1 and sf > 0 such that

sup
t

Pr (|fjt| > a) ≤ C0 exp (−C1a
sf ) for each j = 1, 2, . . . , p.

3. T−1
∑T

t=1 ftf
′
t →p Ip and 1

T

∑T
t=1

[
‖ft‖j − E

(
‖ft‖j

)]
→p 0, j = 3, 4.

Assumption 2

1. Aa and Ab are parameter matrices, the former satisfying Rank (Aa) = m ≥ 0.

2. infi ‖ai‖ > c, and supi ‖ai‖ < C, and for any N = n+m (m being a finite integer)

λmax

(
n−1

N∑
i=m+1

aia
′
i

)
< C <∞, (6)

λmin

(
n−1

N∑
i=m+1

aia
′
i

)
> c > 0. (7)

Assumption 3

1. The n× 1 vector ut is defined by
ut = Hεt, (8)

where
εt = (εm+1,t, εm+2,t, . . . , εNt)

′ ∼ IID (0, In) , (9)

and supi T
−1
∑T

t=1

∑T
t′=1 |Cov(εit, εit′)| < C <∞.

2. There exist sufficiently large positive constants C0 and C1 and sε > 0 such that

sup
i,t

Pr (|εit| > a) ≤ C0 exp (−C1a
sε) .

3. H = (hij) is an n × n matrix with fixed coefficients, with bounded row and column sum
norms, formally ‖H‖1 = supj

∑n
i=1 |hij| < C, and ‖H‖∞ = supi

∑n
j=1 |hij| < C. Further-

more, λmin(HH′) > c > 0.

Assumption 4 ft and εis are independent for all i, s, t.

Remark 1 Most of the above assumptions relate closely to those made in the literature on the
large dimensional factor models (see Remark 2 below). Restricting the covariance matrix of
ft to be the identity matrix is an innocuous simplification, since the factors are identified only
up to a p-dimensional rotation. However, since the methodology proposed in this article goes
beyond estimation in a large-dimensional factor model, some of the assumptions made above
are slightly stronger than those made in the literature. Covariance stationarity of the common
factors is one such restriction but does not rule out conditional heteroskedasticity. Our use of
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results from the multiple testing literature assumes that the probability distributions of εit and
fit have exponentially decaying tails. While this assumption is standard in high-dimensional
statistics, it implies that all moments of εit and fit exist and thus sharpens our assumptions
beyond those required for the estimation of unobserved factors. This assumption simplifies the
theoretical analysis. It can be relaxed, considerably in the case of fit, and replaced with moment
assumptions, at the cost of more complex proofs. We choose to avoid this complexity as we
are mainly focused on suggesting and analyzing a new methodology. Furthermore, to establish
consistency of our proposed criterion, we assume εit to be independently distributed across i
and t.6 Still, dependence between the elements of the unit-specific component ut is allowed
for by Assumption 3 which admits weak cross-section correlation. The rank condition on Aa

in Assumption 2 ensures that m is identified and that xat is pervasive. Assumption 2 implies
strong factors in the sense that the fraction of cross-section units affected is asymptotically non-
negligible. This is a standard property of latent factors in the related literature, as is Assumption
4. On this see, for example, Assumptions L and LFE in Bai and Ng (2008).

Remark 2 A further consideration concerns how the above assumptions relate to those of the
standard factor model literature as set out, for example, in Bai (2003). As noted above our
assumptions are stricter, and therefore imply the assumptions made by Bai (2003). In partic-
ular, Assumption 1 implies Assumption A of Bai (2003), Assumption 2 implies Assumption B
of Bai (2003) and Assumptions 3 and 4 imply Assumptions C, D, E and F1-F2 of Bai (2003)
while we note that we have no need for Assumptions F3-F4 of Bai (2003).

As shown in the next section, it is possible to consistently estimate the parameters of the
static factor model (5), even if the variance matrix of the N × 1 vector vt =

(
0′m×1,u

′
t

)′
,

containing the idiosyncratic errors is singular when m > 0. In our theoretical derivations and
Monte Carlo simulations we only require that pmax ≥ p is known and base our analysis on pmax
principal components of xit for i = 1, 2, . . . , N and t = 1, 2, . . . , T .

4 Identification of pervasive units via thresholding of er-

ror variances

The idea behind our detection procedure is simple. It exploits the fact that there is a clear
separation between the fit of pervasive and non-pervasive units in terms of the factors, ft for
sufficiently large sample sizes. In the context of the restricted factor model representation (5),
a clear separation between a pervasive and non-pervasive unit could be achieved if the common
factors ft as well as xt are observed. In such a case only pervasive units (with exponent α = 1)
will be perfectly correlated with ft. But in practice where only observations on xt are available
to the econometrician, the fit of cross-section specific observations can only be evaluated in
terms of a factor estimate f̂t . Finite sample error in the estimation of the true factors entails
an imperfect fit, and hence would yield strictly positive residual variances, for all cross-sections
(irrespective of where they are pervasive or not). However, residual variances for non-pervasive
units remain bounded away from zero due to their non-degenerate idiosyncratic error, uit, even
asymptotically as N and T → ∞. By contrast, corresponding residual variances for pervasive

6This assumption can be relaxed considerably by requiring εit to follow a martingale difference process over
t, or even to be a strong mixing process with sufficiently small mixing coefficients.
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units exclusively contain sampling errors due to the fact that ft is replaced by its estimator f̂t.
This latter source of variation vanishes as the sample size increases. In situations where prior
information allows narrowing down the number of potential pervasive units to a small set, it
would generally be possible to exploit the behavior of residual variances to develop a statistical
test for the absence of idiosyncratic variation in a given cross-section. However, in the context
of this study , any cross-section is considered to be potentially pervasive. This amounts to a
high-dimensional statistical problem for which standard testing approaches are ill-suited due
to the inherent difficulty of controlling size. For this reason, our detection procedure is based
on classification of cross-sections by means of a threshold rule applied to residual variances.

With this in mind we first extract the first pmax principle components (PC) of the observa-
tions xit for i = 1, 2, . . . , N ; t = 1, 2, . . . , T . We then compute the residual sum of squares from
the regressions of xit, for i = 1, 2, . . . , N on f̂t, where f̂t is the PC estimator of ft with p = pmax.
Specifically, we compute

σ̂2
iT =

x′iMF̂xi
T

, for i = 1, 2, . . . , N, (10)

where xi = (xi1, xi2, . . . , xiT )′,

MF̂ = IT − F̂
(
F̂′F̂

)−1

F̂′, (11)

and F̂ = (̂f1, f̂2. . . , f̂T )′. We then determine a threshold, C2
NT > 0, such that if, and only

if, Nσ̂2
iT < C2

NT then unit i is selected as pervasive. Below we proceed by analyzing the
asymptotic properties of σ̂2

iT , and sketching steps that lead to a procedure that consistently,
namely with probability tending to one, selects only pervasive units. Formal proofs are given
in the Appendix. But first we provide an overview of the literature on estimation of F and A
and derive asymptotic properties for functions of their estimators that are needed to establish
our main theoretical results.

4.1 Consistent estimation of A and F by principal components

Let X = (x1,x2, . . . ,xN) be the T × N matrix of observations on xit for i = 1, 2, . . . , N ; t =
1, 2, . . . , T . It is well known that the T × T matrix XX′ and the N ×N matrix X′X have the
same eigenvalues. Denote the first p largest eigenvalues of these two matrices by (ρ̂1, ρ̂2, . . . , ρ̂p)

and the associated orthonormal eigenvectors of XX′ and X′X by the T × p matrix P̂ and the
N × p matrix Q̂, respectively, and note that by construction P̂′P̂ = Ip, and Q̂′Q̂ = Ip, where
Ip is an p× p identity matrix. Consider now the following PC estimators of F and A:

Â =
√
NQ̂, (12)

F̂ =
1√
N

XQ̂ =
1

N
XÂ. (13)

Given orthonormality of the eigenvectors Q̂, note that N−1Â′Â = Ip. The factor estimator
(13) satisfies

F̂′F̂

T
= D̂NT , (14)

9



where D̂NT = (NT )−1Diag (ρ̂1, ρ̂2, . . . , ρ̂p). This follows since T−1F̂′F̂ = (NT )−1Q̂′X′XQ̂,

and noting that Q̂ are orthonormal eigenvectors of X′X. Alternative estimators of A and F,
suggested by Bai and Ng (2002), are given by

F̃ =
√
T P̂, (15)

Ã =
1

T
X′F̃, (16)

where (15) satisfies T−1F̃′F̃ = Ip. Bai and Ng (2002) also consider the following transformation7

F̃= F̂

(
F̂′F̂

T

)−1/2

= F̂D̂
−1/2

NT , (17)

where the last step follows from equation (14). In the first instance and to proceed with the
derivation of our pervasive unit detection procedure, we discuss the relationships between Â,
F̂ and Ã, F̃, and show that they are equivalent in the context of this paper. This equivalence
result considerably simplifies the derivations and proofs since the probability limit results in
Bai and Ng (2002), as well as the additional results established in the Appendix, relate to F̃
and Ã, whilst for the derivations of our proposed thresholding criterion, it is much simpler to
work in terms of F̂ and Â.

We first note that F̃ and F̂ only differ by the non-singular rotation matrix D̂
−1/2
NT . Then,

using (17) it readily follows that

MF̂ = IT − F̂
(
F̂′F̂

)−1

F̂ = MF̃ = IT − F̃
(
F̃′F̃

)−1

F̃′, (18)

and hence

σ̂2
iT =

x′iMF̂xi
T

=
x′iMF̃xi

T
.

It is helpful to bear in mind the following relationship between the two sets of estimators
(
F̃, Ã

)
and

(
F̂, Â

)
. Note that, by Lemma A.3 in Bai (2003), D̂NT

p→ D, where D is a diagonal matrix

with finite elements (see the proof of Lemma A.1 in Bai (2003)). It follows that∥∥∥D̂NT

∥∥∥
F

= Op (1) . (19)

Further, F̃Ã
′
= F̂Â

′
holds since the common component of X, i.e. FA′, is uniquely determined

by the separation assumption which requires f ′tai to be strongly cross-sectionally dependent
whilst vit is cross-sectionally weakly correlated. (See Assumptions 2 and 3). Hence, recalling
the relation (17) we must have

F̂=F̃D̂
1/2

NT , and Â=ÃD̂
−1/2

NT . (20)

Using the estimators (15)–(16), Bai and Ng (2002) show in their equation (5) that

7Note the typo in the corresponding equation in Bai and Ng (2002).
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1

T

∥∥∥F̃− FHNT

∥∥∥2

F
= Op

(
1

δ2
NT

)
, (21)

where δ2
NT = min(N, T ), and HNT is a non-singular p × p matrix that could depend on N

and T , so long as its probability limit exists and is non-singular. Using (21) and the fact that∥∥H−1
NT

∥∥ = Op(1) holds by the properties of HNT , then

1

T

∥∥∥F− F̃QNT

∥∥∥2

F
= Op

(
1

δ2
NT

)
, (22)

where QNT = H−1
NT , noting that this matrix is non-singular and satisfies ‖QNT‖F = Op(1).

Setting QNT = D̂
1/2
NT , and noting the relation between F̃ and F̂, we also have T−1

∥∥∥F− F̂
∥∥∥2

F
=

Op

(
δ−2
NT

)
, and more generally,

1

T

∥∥∥F− F̂SNT

∥∥∥2

F
= Op

(
1

δ2
NT

)
, (23)

for any non-singular p× p matrix SNT that satisfies ‖SNT‖F = Op (1). It is obvious that (21) is
an important, well known, result that plays an important role in our analysis. However, we need
further basic results that, to some limited extent, go beyond those existing in the literature.
We provide those in the following proposition. To simplify the exposition and without loss
of generality, we set SNT = Ip. Since only the product FA′ is identified, this restriction is
innocuous and implies the normalization N−1A′A = Ip.

Proposition 1 Under Assumptions 1–4, and setting SNT = Ip, we have

∥∥∥F0 − F̂
∥∥∥
F

= Op

(√
T

δNT

)
, (A)

∥∥∥A0 − Â
∥∥∥
F

= Op

(√
N

δNT

)
, (B)

∥∥∥V (A0 − Â
)∥∥∥

F
= Op

(√
NT

δNT

)
, (C)

‖VA0‖F = Op

(√
NT

)
, (D)∥∥∥A′0 (A0 − Â

)∥∥∥ = Op

(
N

δNT

)
, (E)

where F̂ and Â are defined by (13) and (12), and A0 denotes the true value of A, and δ2
NT =

min(N, T ).

The above proposition follows from Lemmas 3-6 set out in the Appendix. For general
rotation matrices HNT ,QNT and SNT , Proposition 1 can be used to obtain∥∥∥∥∥∥

V
(
Ã−A0H

−1
NT

)
N

∥∥∥∥∥∥
F

= Op

(√
T

N

1

δNT

)
. (24)
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The matrix HNT has been introduced into the expression above in order to ensure compatibility

with the results (21) and (23). Again, V
(
Ã−A0H

−1
NT

)
= V

(
ÃHNT −A0

)
H−1
NT , so that∥∥∥V (ÃHNT −A0

)∥∥∥
F
≤ ‖HNT‖F

∥∥∥V (Ã−A0H
−1
NT

)∥∥∥
F
,

and letting HNT = D̂
−1/2
NT S−1

NT , we have∥∥∥V (A0 − ÃD̂
−1/2

NT S−1
NT

)∥∥∥
F
≤ Op (1)Op

[∥∥∥V (Ã−A0H
−1
NT

)∥∥∥
F

]
.

Recall that Â = ÃD̂
−1/2

NT by equation (20). Hence,

∥∥∥V (A0 − ÂS
−1

NT

)∥∥∥
F

= Op

[∥∥∥V (Ã−A0D̂
1/2
NTSNT

)∥∥∥
F

]
= Op

(√
NT

δNT

)
, (25)

by the equality H−1
NT = D̂

1/2
NTSNT and application of result (24). This concludes our discussion

of principal components estimators. The preceding results will be extensively used in the next
section under the simplifying assumption S−1

NT = Ip .

4.2 Thresholding of σ̂2
iT

Equipped with the results of Lemma 1, we consider the asymptotic properties of σ̂2
iT , defined

by (10). Our aim is to develop a threshold C2
NT such that Nσ̂2

iT ≤ C2
NT with probability

approaching 1 as N, T → ∞ if cross-section i is pervasive, while the reverse is true if cross-
section i is non-pervasive. First, assume that a given unit i is pervasive. By equation (5), we
have xi = F0ai, where F0 is the T×m matrix of observations on the true factors. Consequently,
the sample error variance of unit i, once the effects of estimated factors are filtered out, is given
by

σ̂2
iT =

a′iF
′
0MF̂F0ai
T

,

=
a′i

(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
ai

T
. (26)

The last result is obtained noting that F′0MF̂F0 =
(
F0 − F̂SNT

)′
MF̂

(
F0 − F̂SNT

)
, for any

positive definite matrix, SNT . Now, using (5) and post-multiplying both sides by A0 we also
have

XA0

N
=

F0A
′
0A0

N
+

VA0

N
= F0 +

VA0

N
,

where to derive the last step we have made use of the normalization N−1A′0A0 = Im. Further-
more, since F̂ = N−1XÂ by equation (13), then

(
F0 − F̂

)
=

X
(
A0 − Â

)
N

− VA0

N
,
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and

MF̂F0 = MF̂

X
(
A0 − Â

)
N

− VA0

N

 .
Using (5) here to substitute out X,

MF̂F0 = MF̂

F0A
′
0

(
A0 − Â

)
N

+
V
(
A0 − Â

)
N

−MF̂

(
VA0

N

)
(27)

=
MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
N

+
MF̂V

(
A0 − Â

)
N

−MF̂

(
VA0

N

)
.

Using the above results in (26), σ̂2
iT can be written as

Nσ̂2
iT = Bi1 +Bi2 + . . .+Bi6. (28)

where

Bi1 =
a′iA

′
0V
′MF̂VA0ai
NT

, (29)

Bi2 = 2
a′iA

′
0V
′MF̂V

(
A0 − Â

)
ai

NT
, (30)

Bi3 = 2
a′iA

′
0V
′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
, (31)

Bi4 =
a′i

(
A0 − Â

)′
V′MF̂V

(
A0 − Â

)
ai

NT
, (32)

Bi5 = 2
a′i

(
A0 − Â

)′
V′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
, (33)

Bi6 =
a′i

(
A0 − Â

)′
A0

(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
. (34)

If unit i is not pervasive, then it is easy to see that (28) is augmented by two extra terms, given
by8

Bi7 =
Nv′iMF̂vi

T
, (35)

Bi8 =
Na′iF

′
0MF̂vi
T

=
Na′i

(
F0−F̂

)′
MF̂vi

T
, (36)

which will be formally taken into account in the proof of Theorem 1 set out in Section A.2 of
the Appendix. Here, we simply note that Bi7 = Op (N) and Bi8 = op (N).

8Note that in the absence of any pervasive units vi = ui. In general, we use vi (and V) in line with the
general factor model given by (5).
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Using Lemma 1, in the Appendix, we have, assuming that xit is a pervasive unit,

Nσ̂2
iT = Bi1 +Op

(
1

δNT

)
+Op

(√
N

δ2
NT

)
. (37)

Consider now Bi1 and note that

Bi1 =
a′iA

′
0V
′MF̂VA0ai
NT

≤ d′iV
′Vdi

NT
,

where di = A0ai. A threshold C2
NT can hence be derived by focusing on the expression

(NT )−1d′iV
′Vdi which bounds the leading term Bi1 in Nσ̂2

iT . If xit is a pervasive unit,

Pr
(
Nσ̂2

iT > C2
NT

)
≤ Pr

(
d′iV

′Vdi
NT

> C2
NT

)
+ o (1) , (38)

if
√
N/δ2

NT → 0. Note that √
N

δ2
NT

=

{ √N
T

if T ≤ N
1√
N

otherwise
,

and so the condition for the remainder term to vanish is
√
N
T
→ 0, as N, T →∞. It is possible

that this condition can be relaxed if one finds a tighter upper bound for
∥∥∥A′0 (A0 − Â

)∥∥∥ than

result (E) in Proposition 1, and if stationarity is imposed on E (vitvit′), where V = (vit). For

now, we adhere to Assumptions A-F of Bai (2003), and require that
√
N
T
→ 0, as N, T → ∞.

Under these conditions, we focus on the first probability term in (38) and note that

d′iV
′Vdi =

T∑
t=1

(
N∑
j=1

vjtdij

)2

=
T∑
t=1

(d′ivt)
2
,

where di = A0ai = (di1, di2, . . . , diN)′. Note that if the panel contains m pervasive units,
vt = (01×m,u

′
t)
′, where ut = Hεt. See (8). Partition di = (d′i1,d

′
i2)′, where di1 and di2 are the

m× 1 and n× 1 sub-vectors of di (recall that n = N −m). Hence

d′iV
′Vdi =

T∑
t=1

(d′i2ut)
2

=
T∑
t=1

(d′i2Hεt)
2
,

where by assumption H is an n×n matrix with bounded row and column absolute sum norms,
and εt =

(
εm+1,t, εm+2,t, . . . , εN,t

)
∼ IID (0, In). Using the above results we can now write

d′iV
′Vdi

NT
=
( n
N

) 1

T

T∑
t=1

(
d′i2Hεt√

n

)2

=
( n
N

) 1

T

T∑
t=1

(ϕ′iεt)
2
, (39)
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where ϕi = n−1/2H′di2 = (ϕi1, ϕi2, . . . , ϕin)′. Let

η2
in = ϕ′iϕi =

1

n
d′i2HH′di2 =

1

n
d′i2Σudi2, (40)

where Σu = E (utu
′
t) = HH′ and by assumption is time-invariant.9 We also have

sup
i
η2
in ≤ sup

i

(
n−1d′i2di2

)
λmax (Σu) , and inf

i
η2
in ≥ inf

i

(
n−1d′i2di2

)
λmin (Σu) ,

where by assumption 0 < c < λmin (Σu) ≤ λmax (Σu) < C < ∞. Noting that, in view of (6)
and (7), we have

sup
i

(
n−1a′iA

′
bAbai

)
≤ sup

i
‖ai‖2 λmax

(
n−1

N∑
j=m+1

aja
′
j

)
< C <∞, (41)

and

inf
i

(
n−1a′iA

′
bAbai

)
≥ inf

i
‖ai‖2 λmin

(
n−1

N∑
j=m+1

aja
′
j

)
> c > 0, (42)

we also have supi (n
−1d′i2di2) < C, and infi (n

−1d′i2di2) > 0, and overall

sup
i
η2
in < C, and inf

i
η2
in > 0, for all n.

Now using (39) in (38), we have

Pr
[
nσ̂2

iT >
( n
N

)
C2
NT

]
≤ Pr

[
T∑
t=1

(ϕ′iεt)
2
> T

( n
N

)
C2
NT

]
+ o (1)

≤
T∑
t=1

Pr
[
(ϕ′iεt)

2
>
( n
N

)
C2
NT

]
+ o (1) . (43)

where the last line applies Lemma A11 in the online supplement to Chudik, Kapetanios, and
Pesaran (2018) in order to bound the tail probability of a non-negative sum by the sum of
individual tail probabilities. Additionally, letting ϕ′iεt =

∑n
j=1 ϕijεjt, we can write

Pr
[
(ϕ′iεt)

2
>
( n
N

)
C2
NT

]
= Pr

(
|ϕ′iεt| >

( n
N

)1/2

CNT

)
= Pr

(∣∣∣∣∣
n∑
j=1

ϕijεjt

∣∣∣∣∣ > ( nN )1/2

CNT

)
.

In order to proceed from the above expression, we note that under Assumption 3, V ar
(∑n

j=1 ϕijεjt

)
=∑n

j=1 ϕ
2
ij = η2

in, and
Pr (|εjt| > a) ≤ C0 exp (−C1a

s)

for all a > 0, s > 0 and some fixed constants C0 and C1. This assumption allows us to employ
a concentration inequality in order to bound the tail probability of our expression of interest

9However, one can still allow for conditionally time-varying covariances.
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by an exponential function of its second natural moment. More specifically, we apply Lemma
A3 of Chudik, Kapetanios, and Pesaran (2018) to obtain

Pr

(∣∣∣∣∣
n∑
j=1

ϕijεjt

∣∣∣∣∣ > CNT

)
≤ exp

[
− (1− π)2C2

NT

2η2
in

]
, (44)

for some 0 < π < 1 and CNT = O
(
nλ
)
, with 0 < λ < s+1

s+2
(note that n/N = 1 −m/N ≈ 1),

where using (44) in (43) and assuming that unit i is pervasive yields

Pr
(
Nσ̂2

iT >
( n
N

)
C2
NT

)
≤ T exp

[
− (1− π)2C2

NT

2η2
in

( n
N

)]
+ o (1) ,

for some 0 < π < 1 and η2
in as defined by (40). Hence,

Pr
[
Nσ̂2

iT ≤
( n
N

)
C2
NT | i is pervasive

]
≥ 1− exp

[
log (T )− (1− π)2C2

NT

2η2
in

( n
N

)]
,

and
Pr
[
Nσ̂2

iT >
( n
N

)
C2
NT | i is pervasive

]
→ 0,

as N, T →∞, and
√
N
T
→ 0, and if (note that n/N → 1)

log (T )− (1− π)2C2
NT

2η2
in

→ −∞.

This last condition is satisfied if (again setting n/N to unity)

C2
NT >

2 log (T ) η2
in

(1− π)2 ,

or if
C2
NT = 2Cη2

in log (T ) ,

for some C > 1. Accordingly, i can be selected as a pervasive unit if, for some C > 1,

σ̂2
iT ≤

2Cη2in log(T )

N
. Our Monte Carlo results presented in Section 6 show that the simple choice

C = 1, works well in practice.
We note further that in the Appendix we formally show that all remainder terms in (37),

will not exceed the threshold, with probability approaching one if the unit is pervasive. We also
show that Bi7 = Op (N) and Bi8 = op (N) , and further, using (52), that the residual variance,
σ̂2
iT , will exceed the threshold with probability approaching one if the unit is not pervasive.

An important issue relates to the estimation of η2
in. Since n = N − m and in practice

m is not known, at the estimation stage we assume m = 0, and note that under m = 0,
then η2

iN = N−1a′iA
′
0ΣuA0ai for which a consistent estimator can be obtained using the PC

estimators of ai and A0, and a suitable threshold estimator of Σv. Recall that when Σu = HH′

and since by assumption H is a row and column bounded (see Assumption 3), then Σu is
also row-bounded and hence satisfies usual sparsity conditions assumed in the literature on

16



estimation of large covariance matrices (see, e.g., El Karoui, 2008 or Bickel and Levina, 2008).
Then, η2

iN can be consistently estimated by

η̂2
iN = N−1â′iÂ

′Σ̃uÂâi, (45)

where Â is given by (12), âi is the OLS estimator of ai in the regression of xi (the selected
pervasive unit) on F̂, where the latter is given by (13), and Σ̃u = (σ̃ij) is a consistent estimator
of Σu. Here we use the multiple testing estimator of Bailey, Pesaran, and Smith (2019) given
by

σ̃ij = σ̂ijI

(
ρ̂ij >

cπ (N)√
T

)
, cπ (N) = Φ−1

(
1− π

2N δ

)
,

σ̂ij =
1

T

T∑
t=1

ûitûjt, ρ̂ij =
σ̂ij

σ̂
1/2
ii σ̂

1/2
jj

,

where ûit, t = 1, 2, . . . , T are the OLS residuals from the regression of xit (the selected perva-
sive unit) on F̂ (including an intercept in all regressions), Φ−1 (·) is the inverse of cumulative
distribution function of a standard normal variate, π is the nominal size for the multiple testing
procedure, which we set to 1%, and δ is set to 1.5, which allows for possible departures from
Gaussian errors, uit. Other estimators can also be used such as the universal thresholding by
El Karoui (2008) and Bickel and Levina (2008), and the adaptive thresholding by Cai and Liu
(2011).

Our threshold detection algorithm, referred to as σ2 thresholding, can be summarized as
follows:

Algorithm 1 Let xi be the T × 1 vector of observations on the i-th unit in the panel, and
X = (x1,x2, . . . ,xN) be the T × N matrix of observations on all the N units in the panel.

Suppose that p ≤ pmax, where pmax is selected a priori to be sufficiently large. Compute F̂ =
1√
N

XQ̂, where Q̂ is the N × pmax matrix whose columns are the orthonormal eigenvectors of

X′X, such that N−1Q̂′Q̂ = Ipmax. Compute âi, v̂it and σ̂2
iT to be the OLS estimator, residual

and residual variance of the regression of xi on F̂, namely

âi =
(
F̂′F̂

)−1

F̂′xi,

ûi = (ûi1, ûi2, . . . , ûiT )′ = MF̂xi =

[
IT − F̂

(
F̂′F̂

)−1

F̂′
]

xi,

σ̂2
iT = T−1x′iMF̂xi.

Sort σ̂2
iT in ascending order and denote the sorted series by σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(N)T with σ̂2

(i)T

being the ith smallest value. Consider the cross-section indexes i1, i2, . . . , ipmax corresponding to
σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(pmax)T . Then, select unit j ∈ {i1, i2, . . . i,pmax } to be pervasive if

σ̂2
jT ≤

2η̂2
jN log T

N
, (46)

where η̂2
jN is given by (45).

The following theorem provides a formal summary statement of the preceding analysis.
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Theorem 1 Suppose that observations on xit, for i = 1, 2, . . . , N , and t = 1, 2, . . . , T are
generated according to the general linear factor model given by (1) and (2) with m pervasive
units. Let ID be the set of indices of the pervasive units, and IND its complement, with ID
allowed to be an empty set. Denote by ÎD and ÎDN their estimates based on the threshold

criteria (46). Let Assumptions 1-4 hold and
√
N
T
→ 0. Then as N and T → ∞, jointly, we

have

lim
N,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1.

This theorem establishes that the proposed error variance threshold criterion is consistent,
in the sense that it correctly selects the pervasive (if any) and the non-pervasive units asymp-
totically.

Remark 3 Note that both the theoretical exposition above and the formal arguments of the
Appendix apply both to the case of no external factors as well as the case where all units are
affected by a finite number of external factors, represented by gt in (1) and (2).

5 A sequential, multiple testing version of the σ2 thresh-

olding

The σ2 thresholding procedure, has good but not exceptional small sample properties as we
illustrate in the online supplement to this article. However, it provides a basis for further
development. The first point to note is that while the method is good at detecting the pres-
ence of pervasive units, in general it tends to pick too many units as pervasive. Finite sample
adjustments are needed to achieve a more conservative detection outcome. A simple and ef-
fective refinement of the main method is a sequential algorithm that detects pervasive units
one at a time. Considering a sequential algorithm suggests the use of pervasive units that have
been identified at earlier steps of the procedure as observed factors. This reduces the number
of unobserved factors to be estimated given a maximum number of considered factors, pmax.
Therefore, the static factor model (5) employed to conduct σ2 thresholding is replaced by the
augmented factor model

xit = f∗′t a∗i + x∗′atb
∗
ai + vit, t = 1, 2, . . . , T ; i = 1, . . . N1, (47)

where x∗at is a r×1 vector of identified pervasive units (the row t of the T ×r matrix X∗a), f∗t is a
pmax− r vector of unobserved common factors and vit constitutes the idiosyncratic variation of
unit i at time point t. With regards to the procedure of Section 4.2, the role of σ2 thresholding
is not to determine the number and the identities of the pervasive units directly. Instead, σ2

thresholding is used to determined whether or not there is evidence of remaining pervasive units
in the data, given the pervasive units that have been identified. Being initiated with r = 0
(i.e. no identified pervasive units), N1 = N − r = N and some chosen value of pmax subject to
the condition pmax ≥ m+ 1, the sequential algorithm, referred to as S − σ2 thresholding is an
iteration of the following two steps:

Algorithm 2 1. Conduct σ2 thresholding using model (47), with m∗ = pmax − r estimated
factors. Let m̃ be the estimated number of pervasive units estimated using Algorithm 1.
If m̃ = 0, stop and conclude that there are r pervasive units.
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2. If m̂ > 0, obtain i∗ = arg mini σ̂
2
i . Append xi∗ to X∗a and drop xi∗ from X. Update r to

r + 1 and N1 to N1 − 1.

The two steps are repeated until either m̃ = 0 in the first step or r = pmax at the end
of step 2. The number of pervasive units is then m̂ = r and their identities correspond to
the indices of the columns in the initial T × N vector X that are found in the T × r matrix
X∗a = (x∗a1; . . . ; x∗aT )′.

Effectively the method constructs residuals of the remaining units on the selected units and
repeats the selection on these residuals. The use of residuals in the algorithm’s steps requires
further theoretical refinements. These are discussed in Section A.3 of the Appendix where it is
shown that our proposed threshold is valid only if N < T , which is a more restrictive condition
than that of Theorem 1. In particular, we prove the following result, in Section A.3 of the
Appendix.

Corollary 1 Suppose that observations on xit, for i = 1, 2, . . . , N , and t = 1, 2, . . . , T are
generated according to the general linear factor model given by (1) and (2) with m pervasive
units. Let ID be the set of indices of the pervasive units, and IND its complement, with ID
allowed to be an empty set. Denote by ÎD and ÎDN their estimates based on S−σ2 thresholding.
Let Assumptions 1-4 hold and N

T
→ 0. Then as N and T →∞, jointly, we have

lim
N,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1.

If N ≥ T, then an alternative threshold could be considered. This is given by

σ̂2
iT ≤

2σ̂2
iu log T

T
,

where σ̂2
iu = T−1

∑T
t=1 (xit −X∗′atγ̂

∗
i )

2, with γ̂∗i being the estimated vector of slope coefficients
from a regression of MF̂xi on MF̂X∗a. This is justified in Section A.3. As its small sample
properties are inferior to those of our main procedure we do not pursue this further in the main
paper but only in the online supplement. However, it is important to note that it provides a
theoretical justification for our general methodology when N > T.

Finally, the sequential algorithm can be supplemented with an additional multiple testing
hurdle in order to reduce the risk of falsely detecting a pervasive unit in small samples. Anal-
ogous to the plain sequential algorithm discussed above, the extended algorithm is initiated
with r = 0 , N1 = N and some chosen value of pmax subject to the condition pmax ≥ m+ 1. It
consists of the following five steps which are repeated until the estimated number of pervasive
units m̃ in the first step is equal to zero:

Algorithm 3 1. Conduct σ2 thresholding using model (47) and m∗ = pmax − r estimated
factors. Let m̃ be the estimated number of pervasive units estimated using Algorithm 1.
If m̃ = 0, stop and conclude that there are r pervasive units.

2. If m̃ > 0, obtain i∗ = arg mini σ̂
2
i . For each j = 1, . . . i∗ − 1, i∗ + 1, . . . , N1 estimate the

model
xjt = µ∗j + xi∗tγ

∗
j + f∗′t a∗j + x∗′atb

∗
aj + vjt, t = 1, 2, . . . , T, (48)

where the unobserved factors f∗t are estimated by the eigenvectors associated to the pmax−r
largest eigenvalues of X−i∗X

′
−i∗ with X−i∗ = (x1; . . . ; xi∗−1; xi∗+1; . . . ; xN1).
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3. Carry out N1 − 1 individual t-type tests to check the statistical significance of the slope
parameters γ̂∗j for all j 6= i in (48). These tests have the form

t∗j = γ̂∗j

√√√√ ∑T
t=1 x

2
i∗t

T−1
∑T

t=1 v̂
2
jt

,

where v2
jt = xjt− µ̂∗j − xi∗tγ̂∗j − f̂∗′t â∗j + x∗′atb̂

∗
aj. Let the critical value for each of these tests

be given by Φ−1
[
1− π

2(N1−2)

]
, where the nominal size of the individual tests, π, is chosen

by the investigator. In our analysis we set π = 0.01.

4. Let M denote the number of rejections among these N1−1 tests. If log(M)/ log(N) ≤ 1/2,
stop and conclude that there are r pervasive units.

5. If log(M)/ log(N) > 1/2, append xi∗ to X∗a and eliminate xi∗ from X. Update r to r + 1
and N1 to N1 − 1

We refer to this algorithm as Sequential-MT σ2 thresholding or SMT − σ2 thresholding
for short. Two remarks concerning algorithm 3 are in order. First, deviating from a standard
t-statistic when conducting N1 − 1 significance tests is a necessary adjustment to account for
the nonstandard properties of the auxiliary regression (48). If i∗ denotes the index of a true

pervasive unit, then the set of regressors
(
xi∗t; f̂∗′t

)
is asymptotically multicollinear since f̂∗′t

is consistent for the space spanned by all common factors driving xjt, including xi∗t. As shown
in Appendix A.4, this characteristic of the model affects the properties of a test statistic for
the statistical significance of γ∗j and is resolved by replacing the standard estimator of V ar

(
γ̂∗j
)

with a different standardization for γ̂∗j . A further important point is that we need to have an

estimate of the full common factor space, such as f̂∗t . Otherwise, even non-pervasive units
will appear significant in (48) since the impact of external factors and pervasive units will turn
them into a proxy for unaccounted sources of common variation.

Second, the rule log(M)/ log(N) ≤ 1/2, or M ≤ N1/2 is motivated by the fact that if a
factor enters only M units, where M = o(N1/2), then, it is considered to be a very weak factor,
and under certain conditions, it is not detectable using principal components - see, e.g., Bailey,
Kapetanios, and Pesaran (2016). Again, after stopping the sequential algorithm, the number
of pervasive units is m̂ = r and their identities correspond to the indices of the columns in the
initial T ×N vector X that are found in the T × r matrix X∗a = (x∗a1; . . . ; x∗aT )′.

The additional multiple testing step ends up being very effective in small samples and
is therefore our preferred approach. While we do not provide a fully rigorous proof for the
consistency properties of the multiple testing step we refer the reader to Chudik, Kapetanios,
and Pesaran (2018) where a full analysis of multiple testing, within a multiple regression setting,
is provided. From that analysis and, in particular, Theorem 1 of that paper, it readily follows
that the multiple testing step selects with probability approaching one, as N, T → ∞, only
pervasive units.
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6 A comparative analysis of detection procedures by Monte

Carlo simulations

Using Monte Carlo simulations we now investigate the small sample performance of our new
method relative to the methods proposed by Parker and Sul (2016, henceforth PS) and Brown-
lees and Mesters (2018, BM in the following).10 The PS method yields identical outcomes
irrespective of whether the observations are standardized to have in sample zero means and
unit variances or not. Our proposed method, being based on residuals, is not affected by
demeaning of the observations and the scaling is done through the determination of the unit-
specific thresholds, and hence standardization will not be an issue. In contrast, BM’s detection
method can be quite sensitive to standardization in finite samples, although asymptotically
it should not matter whether the individual series in the panel are standardized. The BM
method is also applied either including all the N units, or only the N/2 most connected units
when selecting the pervasive units.11 Accordingly, we consider four variants of the BM method:
modified and unmodified with and without standardization. We shall refer to these variants as
BM and BM (standardized) when only the N/2 most connected units are considered at the
selection stage, and unmodified BM and unmodified BM (standardized) when all the N units
are included when selecting the pervasive units. In the paper we focus on the modified version
of BM, and give the results for their unmodified version in the online supplement. It is clear
that fewer units will be detected when the modified version is used, even though the effect of
standardization is less clear cut. Amongst the various σ2 thresholding procedures discussed, we
focus on SMT−σ2 thresholding as described by Algorithm 3.12

In accordance with the formal presentation in Section 3, we simulate the pervasive unit
model as

xta = µa + Λagt + ht, (49)

xtb = µb + Bxta + Λbgt + ut, (50)

for t = 1, 2, . . . , T . The N ×1 vector of fixed effects, µ = (µa;µb)
′, are drawn from IIDU(0, 1).

The k0 × 1 vectors gt, for t = 1, 2, . . . , T , representing the unobserved common factors, are
generated as gt = R

1/2
g (g∗,t − 2τ k)/2, where τ k = (1, 1, . . . , 1)′, g∗,t is a k × 1 vector generated

as IIDχ2(2), R
1/2
g is the square root of the k0 × k0 matrix Rg defined by

Rg = (1− ρg)Ik + ρgτ kτ
′
k,

where ρg represents the pair-wise correlation coefficients of the distinct (i, j) elements of gt,
assumed to be the same across all i and j = 1, 2, .., k. Specifically, Cov(gt) = Rg. Similarly,
the m0 × 1 vector ht is generated analogously as

ht = R
1/2
h (h∗,t − 2τm)/2, Rh = (1− ρh)Im + ρhτmτ

′
m,

10The detection methods of Parker and Sul and Brownless and Mesters are described in some detail in the
online supplement.

11In their simulation analysis BM seem to be using the unmodified version of their method without standard-
ization, whilst in their empirical applications they apply the modified version after standardization. See Section
6 of Brownlees and Mesters (2018).

12Simulation results for other two variants of σ2 thresholding, described by Algorithms 1 and 2, are provided
in the online supplement.
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where h∗,t ∼ IIDχ2(2). It follows that Cov(ht) = Rh, and ρh represents the pair-wise correla-
tions of the elements of ht, assumed to be the same across all pairs. The m0 × k0 matrix Λa

and the n × k0 matrix Λb are obtained as IIDU(0, 1). The correlation coefficients ρg and ρh
are drawn from U(0.2, 0.8), and are allowed to vary across replications.

The importance of the pervasive units for the non-pervasive units is represented by the
(N −m0)×m0 loading matrix B = (bij). To allow for the possibility of both strong and weak
pervasive units, bij are generated as

bij

{
∼ IIDU(0, 1) if i ≤ b(N −m0)αc
= 0 otherwise.

, for i = 1, 2, . . . , N −m0; j = 1, 2, . . . ,m0, (51)

where as introduced in (4 ), α is the exponent that measures the degree of dominance of xta in
the panel. For the sake of simplicity, all pervasive units are assumed to have the same degree
of dominance so that a subscript on α is redundant . When α = 1 the units are pervasive, in
the sense that they have non-zero effects on all the N − m0 non-pervasive units. This is the
standard case in the common factor literature and ensures that limN→∞(N − m0)−1B′B is a
positive definite m0×m0 matrix. This condition clearly breaks down when α < 1. As we noted
before, xta are then referred to as weakly pervasive units.13

The errors ut = (uit) are generated as heterogeneous first order autoregressive processes

uit = ρiuit−1 + (1− ρ2
i )

1/2εit, for t = −49, . . . , 0, 1, 2, . . . , T ; i = 1, 2, . . . , N −m0,

where ρi ∼ IIDU(0.2, 0.5). The errors εit are allowed to be cross-sectionally weakly cor-

related. To achieve this we set εt = (ε1t, ε2t, . . . , εnt)
′ = Σ1/2R

1/2
u ζt, n = N − m, with

Σ = diag(σ11, σ22, . . . , σnn), and

Ru =


1 ρu ρ2

u . . . ρn−1
u

ρu 1 ρu . . . ρn−2
u

ρ2
u ρu 1 . . . ρn−3

u
...

...
...

. . .
...

ρn−1
u ρn−2

u ρn−3
u . . . 1

 .

We set ρu = 0.5, σii = σ∗,ii/4+0.5, and σ∗,ii ∼ IIDχ2(2), thus ensuring that E(σii) = 1. Lastly,
ζit = (ζ∗,it − 2)/2, where ζ∗,it ∼ IIDχ2(2). In order to avoid dependence of ut on its starting
values we discard the first 50 observations. All random variables are redrawn at the start of
each replication of the simulation experiments.

We carry out all the different experiments for the following N and T combinations:

N ∈ {50, 100, 200, 500} and T ∈ {60, 110, 210, 250} .

These N and T values allow for both cases where T > N , which is required for the BM procedure
to be applicable, as well as when T < N , which often arises in empirical applications, and can
be considered using our proposed method and the PS procedure.

13A unit is viewed as weakly pervasive if it affects a number of cross section units, but the number of the
units that it affects does not rise as fast as the total number of units in the panel (network). See also Chudik,
Pesaran, and Tosetti (2011).
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The above setup allows us to control the number of pervasive units, m0, the number of
external factors, k0, as well as the degree of dominance of the pervasive unit, α. We consider
all m0 ≤ 2 and k0 ≤ 2 combinations, namely

{m0, k0} = {0, 0} , {0, 1} , {0, 2}, {1, 0} , {1, 1} , {1, 2}, {2, 0} , {2, 1} , {2, 2} .

In cases where m0 > 0, we experiment with two values of α = 1 and α = 0.8. Our theoretical
derivations relate to the case of strongly pervasive units, namely when α = 1. However, in
practice it is more likely that the pervasive units are not strong, but still quite influential,
which we represent by the choice of α = 0.8. In the production network literature where the
degree of the dominance can be computed from input-ouput tables, α is estimated to lie in the
region of 0.7− 0.8. See Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Pesaran
and Yang (2019, Definition 1).

Finally, all simulations in this section are conducted with 2, 000 replications.

6.1 MC results

The first scenario to consider is one without any pervasive units (m0 = 0). The results for
SMT−σ2 and the PS procedures are summarized in Table 1, which gives the empirical frequency
of correctly estimating m0 to be 0. This table does not include the detection procedure proposed
by BM, since the BM method pre-assumes that m0 > 0, and therefore always incorrectly selects
at least one pervasive unit. As can be seen from this table, the SMT−σ2 thresholding performs
very well, even in the presence of external common factor (namely when k0 > 0), so long as N
is sufficiently large. It is only outperformed by the PS procedure when N is small (N = 50)
and there are external factors (k0 > 0). Table 2 reports the average number of non-pervasive
units (across replications) that are falsely selected as pervasive by SMT−σ2, PS and BM. In
this regard, SMT−σ2 and PS perform perfectly when there are no external factors (k0 = 0),
and register a small number of incidence of false discovery when k0 = 1, and N relatively
small. However, the PS procedure seems to break down when the number of external factors is
increased to k0 = 2, and its average number of false discoveries reaches 41 with N = 500 and
T = 250. However, the SMT−σ2 thresholding continues to perform well even for k0 = 2. As
can be seen from Table 2, the average number of false discoveries of SMT−σ2 thresholding is at
most 0.7 over all values of N and T , and tends to zero as N is increased. By contrast, the BM
procedure will always falsely selects non-pervasive units as pervasive even for panels with N
and T large (subject to T > N). The average number of false discoveries for the BM procedure
lies in range of 3 to 4, and is unaffected by standardization. However, modification of the BM
procedure seems to play a crucial role in controlling the number of false discoveries. If we use
the unmodified version of BM the average number of false discoveries rise dramatically and can
reach around 100 for N = 200 and T = 250, with standardization only helping marginally. See
Section S5 of the online supplement for details.

Consider now cases where the DGP contains one or two pervasive units. Table 3 reports the
empirical frequency of correctly estimating the number and the identity of the pervasive units
by all the three detection procedures. The top panel of the table gives the results for all the
three detection procedures when there is one pervasive unit (m0 = 1), with and without external
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Table 1: Empirical frequency of correctly identifying the absence of a pervasive unit

SMT−σ2 PS
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 100 100 100 100 50 99.4 99.2 99.6 99.8

100 100 100 100 100 100 100 100 100 100
200 100 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 88.4 86.4 82.7 80.3 50 53.2 92.0 97.3 97.7
100 94.1 92.3 90.7 88.9 100 75.5 98.5 100 100
200 99.8 99.2 99.4 99.2 200 90.6 100 100 100
500 100 100 100 100 500 92.9 100 100 100

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 61.6 55.9 47.7 44.3 50 81.0 80.1 69.5 69.5
100 84.0 74.5 64.2 60.9 100 86.6 85.7 63.1 57.4
200 98.6 97.7 94.2 94.1 200 82.5 66.1 46.3 39.7
500 100 100 100 99.9 500 99.4 46.8 22.6 17.6

Notes: SMT−σ2 thresholding is implemented using Algorithm 3, with pmax =
m0 + k0 + 1, where m0 is the true number of pervasive units (if any) and k0 is
the number of external factors. Threshold in the σ2 thresholding step is given by
σ̂2
iT ≤ 2η̂2iNN

−1 log(T ). PS refers to the Parker and Sul (2016) method by setting
the number of potential pervasive units to N/10 per estimated factor, with the num-
ber of factors selecting using ICp2 criterion of Bai and Ng (2002). See also online
supplement.

factors, namely for k0 = 0, 1 and 2. The lower part of the table gives the empirical frequencies
when m0 = 2, and k0 = 0, 1 and 2. For the BM procedure we are only able to provide results
when T > N . The relative performance of the three detection procedures very much depends
on whether the observations are affected by an external factor, and the relative sizes of N and
T . For example, the PS method works very well only if m0 = 1 and k0 = 0, and breaks down
completely if there are external factors or if there is more than one pervasive unit. The BM
method performs well when it is known that m0 ≥ 1 and T > N . By contrast, our proposed
method works reasonably well for all values of m0 and k0, and continues to be applicable even if
T < N . Amongst the three methods considered only the SMT−σ2 thresholding method is able
to select the true pervasive units with probability approaching unity as both N and T become
large. Not surprisingly, the small sample performance of SMT−σ2 thresholding deteriorates as
the number of common factors, be it pervasive units or external factors, is increased. In Table
4 we again consider the average number of false discoveries. The results are similar to the ones
obtained earlier, with SMT−σ2 procedure performing best overall. It is also interesting to note
that standardization of observations affect the BM procedure adversely. This is particularly
pronounced when m0 = 2. Again, the modification of the BM procedure is critical for its
performance. When the BM procedure is applied without modification we again obtain a
large number of false discoveries, as can be seen from the results in Section S5 of the online
supplement.

The above findings continue to hold when the DGP contains weakly pervasive units in-
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Table 2: Average number of non-pervasive units falsely selected as pervasive (m0 = 0)

k0 = 0 k0 = 1 k0 = 2
SMT−σ2 SMT−σ2 SMT−σ2

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.1 0.2 0.2 0.2 50 0.4 0.5 0.6 0.7

100 0 0 0 0 100 0.1 0.1 0.1 0.1 100 0.2 0.3 0.4 0.4
200 0 0 0 0 200 0 0 0 0 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

PS PS PS
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0 0 0 0 50 0.9 0.2 0.2 0.1 50 0.7 1.2 1.8 1.8
100 0 0 0 0 100 0.3 0 0 0 100 1.0 1.4 3.7 4.2
200 0 0 0 0 200 0.1 0 0 0 200 3.2 6.7 10.7 12.0
500 0 0 0 0 500 0.1 0 0 0 500 0 26.2 38.4 41.0

BM BM BM
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 4.1 3.7 4.7 4.9 50 3.9 4.0 4.5 4.9 50 3.9 3.8 4.5 4.7
100 n/a 3.6 3.6 4.1 100 n/a 3.5 3.7 4.2 100 n/a 3.7 3.6 4.0
200 n/a n/a 3.2 3.1 200 n/a n/a 3.2 3.0 200 n/a n/a 3.1 3.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

BM (standardized) BM (standardized) BM (standardized)
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 4.1 3.4 3.3 3.2 50 3.9 3.3 3.6 3.9 50 3.6 3.4 3.5 3.6
100 n/a 4.1 3.0 2.9 100 n/a 3.4 3.4 3.4 100 n/a 3.2 3.3 3.4
200 n/a n/a 3.4 2.8 200 n/a n/a 3.0 2.8 200 n/a n/a 3.0 2.7
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: The SMT−σ2 and PS methods are as described in the notes to Table 1. BM refers to the modified detection method
used in Section 6 of Brownlees and Mesters (2018). BM (standardized) stands for application of BM to data that have been
recentered and rescaled so that each cross-section specific time series has an average of zero and a variance of one. BM methods
are not applicable (n/a) if T < N .

stead of pervasive units. Table 5 reports the results for models with weakly pervasive rather
than strong pervasive units, where the exponent of cross-sectional dependence of the pervasive
unit(s), is set to α = 0.8 instead of α = 1. (see (51) for a definition of α). Not surprisingly, the
empirical frequency of correctly identifying the true weakly pervasive units is generally lower as
compared to the case where the pervasive units are strong. Nevertheless, SMT−σ2 thresholding
and BM procedure perform reasonably well even in this case. Of course, the BM method is
applicable only in the case of panels with T > N and if it is known that m0 > 0. In cases where
both BM and SMT−σ2 thresholding are applicable, the proposed method seems to perform
somewhat better, particularly when T − N is not that large. Finally, considering the average
number of non-pervasive units, falsely selected, in Table 6 we again note very similar patterns
to those present in Table 4, with SMT−σ2 again performing best.

7 Empirical Applications

In this section we present empirical applications that showcase our proposed detection method-
ology. We consider three different applications, and report the pervasive units (if any) selected
by SMT−σ2 thresholding, as well as the methods of Parker and Sul (2016) and Brownlees and
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Mesters (2018). As in the MC section, we focus on the modified version of the BM procedure
(where selection is based only on the N/2 most connected units), but report results with and
without standardization of the individual time series.14

7.1 U.S. industrial production

We begin with a panel of monthly observations on production of N = 138 industrial sectors
of the U.S. economy over the period 1972m1-2007m12. This data set has been compiled by
Foerster, Sarte, and Watson (2011), and used by Brownlees and Mesters (2018) to study the
presence of pervasive production sectors in the U.S.15 As noted previously, by construction
BM method will end up finding at least one pervasive sector. In fact, Brownlees and Mesters
(2018) find between 2 and 5 pervasive sectors, prepervasively related to the production of
light motor vehicles and aluminum products. They arrive at these results by applying their
modified detection procedure to sectoral growth rates after standardization. In addition to
determining which sectors are pervasive, the authors rank different sectors according to their
level of dominance by ordering the column norms of the inverse sample covariance matrix. A
comparison of this ranking with one based on the explanatory power of estimated common
factors on sector-specific series is provided, revealing substantial differences in the suggested
list of highly influential sectors.

We apply all the three detection methods to the full dataset as well as to the two sub-
samples, 1972m1–1983m12 and 1984m1–2007m12, investigated in Foerster, Sarte, and Watson
(2011). For application of the PS method we selected the number of factors using the ICp2
criterion of Bai and Ng (2002). We set the maximum number of factors to 10 and obtain
1 common factor for the full sample and the first sub-sample, and 2 common factors for the
second sub-sample. In application of the SMT−σ2 we do not need to estimate the number of
factors, but set a maximum value for p = m + k. To this end and to cover a wide range of
possible factors, and to check the robustness of the SMT−σ2 thresholding to the choice of pmax,
we tried all the values of pmax in the range {2, 3, 4, 5, 6}.

The results are summarized in Table 7. The top panel of the table gives the results for
the full sample, followed by the two sub-sample results. Starting with SMT−σ2 thresholding,
we find that no sector is identified as pervasive, with the result being robust to the choice of
pmax and the sample period. This conclusion is in line with the estimates obtained by Pesaran
and Yang (2019) who make use of input-output tables for the whole U.S. economy. The PS
procedure arrives at the same outcome and does not detect any pervasive sector when the full
sample is used, but identifies Plastic Products as pervasive in the first sub-sample, and as many
as 19 sectors as pervasive in the second sub-sample. The list of these 19 sectors is given at the
bottom of Table 7, and includes a diverse array of sectors such as Cheese, Breweries, Plastic
Products, Shipping Containers, and more.

The results from the application of the BM procedure are mixed and depend on whether the
observations are standardized, and the sample period considered.16 As can be seen from the
last two columns of Table 7, for the full sample BM selects Fluid Milk as the pervasive sector if

14Estimation results for unmodified BM without restrictions on the maximum number of pervasive units can
be found in Section S6 of the online supplement.

15In their study, Foerster, Sarte, and Watson (2011) make use of a quarterly version of this data set, and BM
choose monthly frequency to ensure T > N , which their detection procedure requires.

16The detection outcomes also very much depend on whether one uses the modification of the BM procedure
or not. The results for unmodified BM is in the online supplement.
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observations are not standardized, and selects Automobiles and Light Duty Motor Vehicles, and
Motor Vehicle Parts, as pervasive when observations are standardized. For the two sub-samples
the results are much more dispersed, and only Motor Vehicle Parts is included in the list of
the pervasive sectors for all sub-samples when the observations are standardized. Considering
that by construction BM will end up with at least one sector as pervasive, and the Monte
Carlo evidence suggests that BM is particularly prone to false discovery when observations
are standardized, the detection outcome of the BM procedure for this application should be
approached with caution.

In addition to splitting the sample at the end of 1983, we also applied our detection method
to rolling samples with window sizes of 10, 12, 15 and 20 years, in order to obtain further
evidence on how the number and identity of pervasive units could be subject to change. As
previously, the maximum admissible number of common factors and pervasive units is set to
pmax ∈ {2, 3, 4, 5, 6}. For the sake of brevity, only SMT−σ2 thresholding is considered. The
results unanimously confirm our previous finding that there is no pervasive sector in the U.S.
industrial production.

7.2 Are there pervasive economies or equity markets in the global
economy?

In a second application, we use quarterly observations on real GDP and real equity prices
over a number of countries and equity markets spanning the period 1979Q2-2016Q4, providing
T = 151 observations for each country.17 Data on real GDP is available for 33 countries and
account for over 90 percent of global output. The equity price observations are available for 26
countries, and include all major equity markets.

7.2.1 Cross country output growths

A recent investigation of cross country correlation of real GDP growth rates is given in Cesa-
Bianchi, Pesaran, and Rebucci (2018), and shows that accounting for one common factor is
enough to reduce average pairwise cross country correlations to almost zero. Despite this
suggestive evidence for the presence of only one factor in GDP, we consider a wider set of
choices concerning the number of latent factors, and experiment with pmax ∈ {2, 3, 4, 5, 6}
when applying σ2 thresholding. As in the previous application, the results from the application
of SMT-σ2 thresholding are compared to the other two detection procedures (BM and BM
standardized as well as PS). The results are summarized in Table 8. In this application SMT−σ2

thresholding selects 1 country (France) as pervasive in terms of GDP growth when pmax = 3, 4
or 5, and selects no pervasive country if pmax = 2 or 6. Given the cross country growth evidence
provided by Cesa-Bianchi, Pesaran, and Rebucci (2018) it is more reasonable to rely on the
detection evidence when pmax = 2, which is compatible with assuming one common global
technology factor (i.e. k0 = 1) with one possible pervasive country, say U.S., (with m0 = 1)
which gives pmax = 2. Also if we use the ICp2 criterion of Bai and Ng (2002) to select the
number of factors across country growth rates we also end up with one factor. (see footnote 1
of Table 8). So we conclude that there is no compelling evidence for the presence of a pervasive
country in terms of output growth, and the detection of France as a pervasive economy when

17Cross country data is taken from the latest vintage of the GVAR data set as described in Mohaddes and
Raissi (2018).
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pmax = 3, 4 and 5, is most likely a false discovery. This conclusion is also supported when we
consider the result obtained from the application of the PS procedure to the GDP growth series.
In contrast, BM procedure selects France and Spain as pervasive economies when the growth
series are not standardized, and selects an additional 9 economies (a total of 11 economies out
of 33) as pervasive, if observations are standardized. This outcome is difficult to interpret and
most likely reflects the tendency of the BM procedure to over-select as documented in the MC
section.

Table 8: Pervasive unit detection methods applied to cross country rates of change of real GDP
(33 countries) and real equity prices (26 markets) over the period 1979Q2-2016Q4 (151 time
periods)

Rate of change of real GDP
Approach: SMT−σ2 PS BM BM (standardized)

pmax 2 {3, 4, 5} 6 1†

Number of pervasive units: 0 1 0 0 2 11
Identities: France France Italy UK

Spain Spain Malaysia
France Belgium

USA Finland
Germany South Africa

Canada

Rate of change of real equity prices
Approach: SMT−σ2 PS BM BM (standardized)

pmax 2, 3, 4, 5, 6 2†

Number of pervasive units: 0 6 6 1
Identities: France USA Netherlands

Germany Netherlands
Malaysia UK

Netherlands Canada
Singapore Switzerland
Thailand Germany

† This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Note: Data taken from the GVAR database (Mohaddes and Raissi, 2018).

7.2.2 Cross market rate of change of real equity prices

The results for the rate of change of real equity prices are summarized in the lower panel of
Table 8. In this application SMT−σ2 thresholding is the only method not identifying any of the
equity markets as pervasive. Both PS and BM procedures select 6 markets as pervasive, and
agree only on Germany and Netherlands as the pervasive equity markets. Interestingly enough,
BM only selects Netherlands as pervasive when observations are standardized. Once again we
find the BM detection method to be highly sensitive to standardization of observations.

Finally, it is important to bear in mind, that not finding a pervasive unit does not mean
that the global economy is not subject to global shocks. Our results suggest that once we allow
for the possibility of global shocks, it is difficult to find convincing evidence that any country
can be singled out as pervasive. This result is also compatible with the presence of influential

33



economies such as U.S., China, Japan and Germany as having important global and regional
impacts in the world economy.

7.3 U.S. house price changes

It is well established that house price changes in the U.S. are governed by common national and
regional factors (see e.g. Holly, Pesaran, and Yamagata, 2010; Bailey, Holly, and Pesaran, 2016),
and it is of interest to investigate if any of these common factors are due to the dominance of
particular states amongst the 48 mainland states of the U.S.. To this end we consider state-
level quarterly data on real house prices over the 1975Q1–2014Q4 period (T = 160).18 In our
analysis we use the rate of change of real house prices, after seasonal adjustment, with nominal
house prices deflated by the state-level consumer price indices.

Table 9: Estimated U.S. states with pervasive housing market

Approach: SMT−σ2 PS BM BM (standardized)

pmax 2 3 4, 5, 6 5†

Number of per-
vasive units:

1 2 0 2 4 6

Identities: New York Kentucky New Hampshire North Carolina Connecticut
New York Nevada Maryland New Hampshire

Virginia Massachusetts
Connecticut Maryland

Virginia
Rhode Island

†: This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Notes: Data taken from Freddie Mac House Price Indexes and Yang (2018).

To investigate whether house price changes in any of 48 mainland U.S. states could be
regarded as pervasive or pervasive for the rest of the states, as in the previous applications,
we implement SMT−σ2 thresholding with pmax = {2, 3, 4, 5, 6}. The PS and BM methods are
applied as before. The results are summarized in Table 9. As can be seen there are significant
differences in the outcomes depending on the method used. In the case of SMT−σ2 thresholding
New York is identified as pervasive when the maximum number of common factors is set to 2
and 3. No pervasive unit is found for pmax ∈ {4, 5, 6}, and Kentucky is also selected as pervasive
when pmax = 3, which could be false discovery. The BM procedure identifies many more states
as pervasive with no clear geographical patterns. Without standardization, BM selects North
Carolina, Maryland, Virginia and Connecticut as pervasive, whilst with standardization three
additional states are selected as pervasive, namely New Hampshire, Massachusetts and Rhode
Island. Connecticut is not selected when we use BM (standardized). We take these results
as weak evidence for the influential role of the north-eastern part of the United States with
New York being the most plausible candidate. By contrast, PS detects two pervasive units in
two opposite corners of the U.S., namely New Hampshire and Nevada, thus providing a less
coherent picture compared to the other two approaches.

18House price data is taken from Freddie Mac House Price Indexes (http://www.freddiemac.com/research/
indices/house-price-index.html). State-level consumer price indexes were taken from Yang (2018) who
updated a previously constructed dataset of Bailey, Holly, and Pesaran (2016).
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8 Concluding remarks

Recent developments in network and panel literature have emphasized the importance of some
key units for interdependencies among economic agents. For example, financial networks can
be resilient with no units playing an unduly important (i.e. ’systemic’) role while others may
have pervasive units that need close monitoring. There is a small literature on how to detect
such units but all existing methods are either not rigorously analyzed or have drawbacks such
as assuming, rather that ascertaining, the presence of at least one pervasive unit, or considering
datasets with a relatively small number of cross-section units.

We contribute to this literature by proposing a new thresholding method which is rigorously
developed using theory on large factor models as well as recent developments on multiple testing.
It has good small sample properties and allows for the presence of no pervasive units while being
able to detect weakly influential cross-section entities. Furthermore, our method is versatile in
that it can be applied for a wider combination of cross-sectional and time sample dimensions
and that it is able to handle the presence of external common factors.
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Appendix

This appendix is in two parts. Part A provides the proofs of the main results, whilst Part
B states and proves a number of auxiliary lemmas needed in the main proofs.

A Proof of main results

A.1 Proof of Theorem 1

We need to show that

lim
N,T→∞

Pr
({
ÎD = ID

}
∩
{
ÎND = IND

})
= 1.

It suffices to show that

lim
N,T→∞

Pr

(
∩i∈ID

{
σ̂2
iT ≤

2η̂2
iN log T

N

})
= 1,

and

lim
N,T→∞

Pr

(
∪i∈IND

{
σ̂2
iT ≤

2η̂2
iN log T

N

})
= 0.

Let

η2
iN =

a′iA
′
0ΣvA0ai
N

, and CiNT =
2η2

iN log T

N
.

Then, we need to show equivalently that

lim
N,T→∞

Pr

(
∩i∈ID

{
σ̂2
iT +

2 log T

N

(
η2
iN − η̂2

iN

)
≤ CiNT

})
= 1,

and

lim
N,T→∞

Pr

(
∪i∈IND

{
σ̂2
iT +

2 log T

N

(
η2
iN − η̂2

iN

)
≤ CiNT

})
= 0.

Proceeding from (28), if i ∈ ID, we have Nσ̂2
iT =

∑6
j=1 Bij, where Bij are defined below equation

(28), and
Bij = op (1) , for all i, and j = 2, 3, . . . , 6,

as long as
√
N
T
→ 0. If i ∈ IND then Nσ̂2

iT =
∑8

j=1 Bij, where, recalling (35) and (36),

Bi7 =
Nv′iMF̂vi

T
, and Bi8 =

Na′iF
′
0MF̂vi
T

=
Na′i

(
F0−F̂

)′
MF̂vi

T
.

It is straightforward to show that Bi7 = Op (N). Further, Bi8 = Op

(
N

min(
√
N,T )

)
= op (N) . A

detailed analysis of Bi7 and Bi8 is provided in Section A.2. Terms Bij, j = 1, . . . , 6 depend on i
only through ai and it is assumed that supi ‖ai‖

2 < C <∞. Therefore, it follows immediately
that

lim
N,T→∞

Pr

(
sup
i
|Bij| ≤ DNT

)
= 1, j = 1, 2, . . . , 6,
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for any sequence DNT bounded away from zero. Further, we need to show that

lim
N,T→∞

Pr (∩i∈IND {|Bi7 +Bi8| > CiNT}) = 1, (52)

and it will be sufficient (assuming NCiNT = o
(

min(
√
N, T )a

)
) to show that

lim
N,T→∞

∑
i∈IND

Pr
(
|Bi7| < min(

√
N, T )a

)
= 0,

and
lim

N,T→∞

∑
i∈IND

Pr
(
|Bi8| > min(

√
N, T )a

)
= 0,

for some 0 < a < 1. This result follows straightforwardly by noting from a direct application
of Lemma A7 of Chudik, Kapetanios, and Pesaran (2018) that

Pr
(∣∣v′iMFvi − Tσ2

vi

∣∣ > TNCNT
)
≤ exp

(
−CTN2C2

NT

)
= exp

[
−CTη4

iN (log T )2] ,
for some C > 0. It is easily seen that N exp

(
−CTη4

iN (log T )2) = o(1), noting that supi (η
4
iN) >

0. A similar result obtains for Pr (|v′iMF̂vi − v′iMFvi| > TNCNT ), along the lines of our anal-
ysis below for ηiN starting with (55).

To complete the proof it now suffices to show that

lim
N,T→∞

Pr (∩i=1,2,...,N {|Bi1| ≤ NCiNT}) = 1, (53)

and
lim

N,T→∞
Pr
(
∩i=1,2,...,N

{∣∣η2
iN − η̂2

iN

∣∣ ≤ η2
iN

})
= 1, (54)

or limN,T→∞ Pr (supi |η2
iN − η̂2

iN | ≤ C) = 1,for some finite C > 0, since η2
iN is uniformly bounded

away from zero and infinity. (53) follows from auxiliary Lemmas 3-6.
Consider now (54), and note that by equations (40) and (45), we have

η2
iN − η̂2

iN =
a′iA

′
0ΣvA0ai
N

− â′iÂ
′Σ̃vÂâi
N

. (55)

Then,∣∣η2
iN − η̂2

iN
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∣∣∣∣a′iA′0ΣvA0 (ai − âi)

N
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′
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(
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)
ai

N

∣∣∣∣∣∣ ,
= Ai1 + Ai2 + Ai3,

where Ai2 and Ai3 depend on i only via ai. By the boundedness of ai, auxiliary Lemmas 3-6,
and Theorem 1 of Bailey, Pesaran, and Smith (2019), Ai2 = op (1) and Ai3 = op(1). Hence

lim
N,T→∞

Pr

(
sup
i
Ai2 ≤ C

)
= 1, and lim

N,T→∞
Pr

(
sup
i
Ai3 ≤ C

)
= 1.

37



Now consider Ai1, and note that each element of N−1a′iA
′
0ΣvA0 is uniformly bounded. There-

fore, it suffices to show that limN,T→∞ Pr (supi ‖ai − âi‖ ≤ C) = 1.We have

ai − âi =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
.

So we need to show that

lim
N,T→∞

Pr

(
sup
i

∥∥∥∥∥
T∑
t=1

ftvit

∥∥∥∥∥ ≤ TC

)
= 1, (56)

and

lim
N,T→∞

Pr

[
sup
i

∥∥∥∥∥
T∑
t=1

xit

(
f̂t − ft

)∥∥∥∥∥ ≤ TC

]
= 1. (57)

(56) follows easily. We focus on (57). For example, by (A1) of Bai (2003) we note that

f̂jt − fjt =
1

T

T∑
l=1

f̂jlγlt +
1

T

T∑
l=1

f̂jlζlt +
1

T

T∑
l=1

f̂jlκlt +
1

T

T∑
l=1

f̂jlξlt, (58)

where γlt = γN,lt = N−1
∑N

i=1E(vitvil), ζlt = N−1v′lvt − γlt, κlt = N−1f ′lA
′
0vt, and ξlt = κtl. So

we need to show the following (C changes from instance to instance).

lim
N,T→∞

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlγlt

)∣∣∣∣∣ ≤ TC

]
= 1, (59)

lim
N,T→∞

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlζlt

)∣∣∣∣∣ ≤ TC

]
= 1, (60)

and

lim
N,T→∞

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlκlt

)∣∣∣∣∣ ≤ TC

]
= 1. (61)

We proceed in turn.

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlγlt

)∣∣∣∣∣ > TC

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
γlt

∣∣∣∣∣ > TC

]
+

Pr

(
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xitfjlγlt

∣∣∣∣∣ > TC

)
= A11i + A12i.
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We have, for some 0 < a < 1,

A11i = Pr

(
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
γlt

∣∣∣∣∣ > TC

)
≤

Pr


1

T 1/2

[
min(N,T )a

T

∑T
l=1

(
f̂jl − fjl

)2
]1/2 [

1
T

∑T
t=1

∑T
l=1 γ

2
lt

]1/2

supi

[
min(N,T )−a

T

∑T
t=1 x

2
it

]1/2

> C


≤ Pr

 1

T 1/2

[
min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2
]1/2 [

1

T

T∑
t=1

T∑
l=1

γ2
lt

]1/2

> C

+

Pr

sup
i

(
min (N, T )−a

T

T∑
t=1

x2
it

)1/2

> C

 .
But using Theorem 1 in Bai and Ng (2002),

1

T 1/2

[
min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2
]1/2 [

1

T

T∑
t=1

T∑
l=1

γ2
lt

]1/2

= op (1) ,

and using Lemma 2 to show

Pr

sup
i

(
min (N, T )−a

T

T∑
t=1

x2
it

)1/2

> C

 = o (1) .

Hence, it follows that A11i = o(1). Next

A12i = Pr

(
sup
i

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
l=1

xitfjlγlt

∣∣∣∣∣ > C

)
≤ Pr

(∥∥∥∥∥ 1

T 2

T∑
t=1

T∑
l=1

ftfjlγlt

∥∥∥∥∥ > C

)
+

Pr

(
sup
i

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
l=1

vitfjlγlt

∣∣∣∣∣ > C

)
.

But

Pr

(∥∥∥∥∥ 1

T 2

T∑
t=1

T∑
l=1

ftfjlγlt

∥∥∥∥∥ > C

)
= o (1) ,

We have

Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

vit

(
1

T

T∑
l=1

fjlγlt

)∣∣∣∣∣ > C

]
.

By the independence of fjt and vit and the martingale difference (m.d.) property of vit,(
1
T

∑T
l=1 fjlγlt

)
vit is also m.d., and by the martingale difference exponential inequality of

Lemma A3 of Chudik, Kapetanios, and Pesaran (2018),

Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

vit

(
1

T

T∑
l=1

fjlγlt

)∣∣∣∣∣ > C

]
= o (1) .
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Next, for (60),

Pr

[
sup
i

∣∣∣∣∣
T∑
t=1

xit

(
1

T

T∑
l=1

f̂jlζlt

)∣∣∣∣∣ > TC

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
ζlt

∣∣∣∣∣ > TC

]
+

Pr

(
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

T∑
l=1

xitfjlζlt

∣∣∣∣∣ > TC

)
= A21i + A22i.

But

A21i = Pr

[
sup
i

∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
l=1

xit

(
f̂jl − fjl

)
ζlt

∣∣∣∣∣ > C

]
≤

Pr


[

min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2
]1/2

sup
i

[
min (N, T )−a

T 2

T∑
t=1

T∑
l=1

x2
itζ

2
lt

]1/2

> C

 ≤
Pr


[

min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2
]1/2

> C

+

Pr

{
sup
i

[
min (N, T )−a

T 2

T∑
t=1

T∑
l=1

x2
itζ

2
lt

]
> C

}
.

As before

Pr


[

min (N, T )a

T

T∑
l=1

(
f̂jl − fjl

)2
]1/2

> C

 = o (1) .

Then,

Pr

{
sup
i

[
min (N, T )−a

T 2

T∑
t=1

T∑
l=1

x2
itζ

2
lt

]
≤ C

}

≤ Pr

sup
i

(min (N, T )−2a

T 2

T∑
t=1

T∑
l=1

x4
it

)1/2(
1

T 2

T∑
t=1

T∑
l=1

ζ4
lt

)1/2
 ≤ C

 ≤
Pr

(
1

T 2

T∑
t=1

T∑
l=1

ζ4
lt ≤ C

)
+

Pr

[
sup
i

(
1

T

T∑
t=1

x4
it

)
≤ C min (N, T )2a

]
.

But since T−2
∑T

t=1

∑T
l=1 ζ

4
lt = op (1) , then Pr

(
T−2

∑T
t=1

∑T
l=1 ζ

4
lt > C

)
= o(1), and using

Lemma 2 we obtain

Pr

[
sup
i

(
1

T

T∑
t=1

x4
it

)
> C min (N, T )2a

]
= o(1).

A very similar analysis can be applied to (61), proving the required result.
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A.2 Analyzing terms Bi7 and Bi8 for non pervasive units

We consider the terms Bi7 and Bi8, defined in (35) and (36), and wish to show that Bi8 =
op (Bi7). We note that

Bi7 =
Nv′iMF̂vi

T
= N

(
v′iMFvi

T

)
+
Nv′i (MF̂ −MF ) vi

T

and since T−1v′iMFvi = Op(1), so clearly Bi7 = Op (N). Consider now Bi8, and note that by
expression (27),

MF̂F0 =
MF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
N

+
MF̂V

(
A0 − Â

)
N

− MF̂VA0

N
.

Hence

v′iMF̂F0ai =
v′iMF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
ai

N

+
v′iMF̂V

(
A0 − Â

)
ai

N
− v′iMF̂VA0ai

N

=
Bi81

N
+
Bi82

N
− Bi83

N
.

We examine Bi81, Bi82 and Bi83. For Bi81 we have∣∣∣v′iMF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
ai

∣∣∣ ≤ ‖vi‖ ‖MF̂‖
∥∥∥F0−F̂

∥∥∥∥∥∥A′0 (A0 − Â
)∥∥∥ ‖ai‖ .

Recall that by Assumption 2, ‖ai‖ = Op (1), whereas results (A) and (E) yield∥∥∥F0−F̂
∥∥∥
F

= Op

( √
T√

min (N, T )

)
,

and ∥∥∥A′0 (A0 − Â
)∥∥∥

F
= Op

(
N√

min (N, T )

)
.

Furthermore, since MF̂ is an idempotent matrix we also have ‖MF̂‖ = Op (1). Lastly, note that

‖vi‖ = Op

(√
T
)

holds by Assumption 3 and the fact that vi = ui for any non pervasive unit,

i. Consequently,

|Bi81| =
∣∣∣v′iMF̂

(
F0−F̂

)
A′0

(
A0 − Â

)
ai

∣∣∣ = Op

(
NT

min (N, T )

)
.

Next,

|Bi82| =
∣∣∣v′iMF̂V

(
A0 − Â

)
ai

∣∣∣ ≤ ‖vi‖ ‖MF̂‖
∥∥∥V (A0 − Â

)∥∥∥ ‖ai‖ .
Again, recall that by result (C),∥∥∥V (A0 − Â

)∥∥∥
F

= Op

( √
NT√

min (N, T )

)
.
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So

|Bi82| =
∣∣∣v′iMF̂V

(
A0 − Â

)
ai

∣∣∣ = Op

(
T
√
N√

min (N, T )

)
.

Next,
|Bi83| = |v′iMF̂VA0ai| ≤ ‖vi‖ ‖MF̂‖ ‖VA0‖ ‖ai‖ .

Here, result (D) yields ‖VA0‖F = Op

(√
NT

)
, and |Bi83| = Op

(√
NT

)
. Overall,

Bi8 =
1

T
(Bi81 +Bi82 −Bi83)

= Op

(
N

min (N, T )

)
+Op

( √
N√

min (N, T )

)
+Op

(√
N
)

= op (N) .

A.3 Analysis of sequential σ2 thresholding

Consider the extension to a model of the form

xit = a′ift + b′zt, for i = 1, 2, . . . ,m,

xit = a′ift + b′zt + uit, for i = m+ 1,m+ 2, . . . , N,

where zt is a known and observed vector of variables. We wish to repeat the analysis for
xit − b′zt but use OLS regression of xit on zt to obtain the OLS coefficient b̂ and construct
xit − b̂′zt. Repeating our earlier analysis without zt, we note that Nσ̂2

iT contains now a
further term that potentially dominates other previously analyzed terms. This term is given

by
N(b̂−b)

′
Z′Z(b̂−b)
T

. A possibility is to modify Nσ̂2
iT and consider min(N, T )σ̂2

iT instead. So

we consider
(
b̂− b

)′
Z′Z

(
b̂− b

)
. We simplify the analysis by using a scalar zt. We wish to

bound Pr

[(
b̂− b

)′
Z′Z

(
b̂− b

)
> CT

]
. We have

Pr

[(
b̂− b

)′
Z′Z

(
b̂− b

)
> CT

]
= Pr

∣∣∣∣∣∣
(∑T

t=1 ztvit∑T
t=1 z

2
t

)2 T∑
t=1

z2
t

∣∣∣∣∣∣ > CT

 ≤
Pr

∣∣∣∣∣∣
(∑T

t=1 ztvit∑T
t=1 z

2
t

)2 T∑
t=1

z2
t

∣∣∣∣∣∣ > CT

 .

Using our derivations in the previous sections of the appendix, we have

Pr

∣∣∣∣∣∣
(∑T

t=1 ztvit∑T
t=1 z

2
t

)2 T∑
t=1

z2
t

∣∣∣∣∣∣ > CT

 ≤ Pr

(∣∣∣∣∣
T∑
t=1

z2
t − σ2

z

∣∣∣∣∣ > C/CT

)
+

Pr

(∣∣∣∣∣ 1√
T

T∑
t=1

ztvit

∣∣∣∣∣ > C
1/2
T

)
. (62)
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The right hand side of (62) can be bounded using a martingale difference exponential inequality,
as before, thus providing justification for a criterion of the following form. Select unit i to be
pervasive if

σ̂2
iT ≤

2η̂2
iN log T

N
, if T ≥ N

σ̂2
iT ≤

2σ̂2
iu log T

T
, if T < N,

where σ̂2
iu = 1

T

∑T
t=1

(
xit − b̂′zt

)2

.

A.4 Analysis of the t-type statistic in Algorithm 3

Recall from Section 3 that the model is given by

xat = Ahht + Aggt, (63)

xbt = Baxat + Bggt + ut, (64)

for t = 1, 2, . . . , T , where xat and xbt are m×1 and n×1 vectors of observations at time t on the
pervasive and non-pervasive units, respectively. For simplicity, let uit ∼ iidN (0, σ2

u). Assume
we want to apply the MT hurdle to an element of xat or xbt, denoted by zt. The auxiliary
regressions considered here are

xit = γ∗i zt + λif̂ t + vit, t = 1, 2, . . . , T,

for each i = 1, 2, . . . , N where f̂ t denotes other variables included in the regression. This
amounts to collecting both estimated factors f̂∗t and previously selected pervasive units x∗at ,
as specified in equation (47), into a single vector and this vector f̂ t, which should not be
confounded with the factor estimate f̂t in Sections 4-5 . In the first instance, we will not specify
how factors are estimated for extra generality. In vector form, we can write the model as

xi = zγ∗i + F̂ λi + vi

or
MF̂xi = MF̂ zγ∗i + MF̂vi

where MF̂ = IT − PF̂ and PF̂ = F̂
(
F̂
′
F̂
)−1

F̂
′
. The OLS estimator of the slope coefficient

γ∗i is given by

γ̂∗iz =
(
T−1z′MF̂ z

)−1
T−1z′MF̂xi, (65)

and we are interested in finding the limit expression of both terms on the right-hand side. Both
numerator and denominator are of the form T−1z′MF̂ s = T−1z′ (IT −PF̂ ) s for some variable
s. We consider two cases: The case where z is an element of xat and the case where it is an
element of xbt. In both cases we assume that f̂ t spans (ht,gt) asymptotically, i.e. that there
exists some matrix C such that

p lim
∥∥∥Cf̂ t − (ht,gt)

∥∥∥ = 0
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We start by considering the case where z is pervasive. In that case there exists H such that
z = FH where p lim F̂ = F .

We have

T−1z′ (IT −PF̂ ) s = T−1z′ (IT −PF̂ ) s−T−1z′ (IT −PF̂ ) s

= T−1z′ (PF−PF̂ ) s

= T−1z′
(
F (F ′F )

−1
F ′ − F̂

(
F̂
′
F̂
)−1

F̂
′
)

s

=T−1z′

(
F (F ′F )

−1
F ′ − F̂ (F ′F )

−1
F ′ + F̂ (F ′F )

−1
F ′

−F̂
(
F̂
′
F̂
)−1

F ′ + F̂
(
F̂
′
F̂
)−1

F ′ − F̂
(
F̂
′
F̂
)−1

F̂
′

)
s

= T−1z′
(
F−F̂

)
(F ′F )

−1
F ′s+

T−1z′F̂

[
(F ′F )

−1 −
(
F̂
′
F̂
)−1
]
F ′s+

T−1z′F̂
(
F̂
′
F̂
)−1 (

F−F̂
)′

s

= A1 + A2 + A3.

Let T−1z′
(
F−F̂

)
= Op (c1,N,T ) where c1,N,T → 0 and depends on the factor estimation method.

Further assuming that F ′s = Op(T ), we obtain

A1 = T−1z′
(
F−F̂

)
(F ′F )

−1
F ′s = Op (c1,N,T )

Similarly,

A3 = T−1z′F̂
(
F̂
′
F̂
)−1 (

F−F̂
)′

s = Op (c1,N,T ) .

The order in probability of A2 differs slightly since this expression is a function of F̂
′ (
F̂ − F

)
=

F ′
(
F̂ − F

)
−
(
F̂ − F

)′ (
F̂ − F

)
. Let T−1

(
F̂ − F

)′ (
F̂ − F

)
= Op (c2,N,T ) . More specifi-

cally, we have

A2 = T−1z′F̂

[
(F ′F )

−1 −
(
F̂
′
F̂
)−1
]
F ′s

= T−1z′F̂ (F ′F )
−1
(
F̂
′
F̂ − F ′F

)(
F̂
′
F̂
)−1

F ′s

= T−1z′F̂ (F ′F )
−1
(
F̂
′
F̂ − F̂ ′F + F̂

′
F − F ′F

)(
F̂
′
F̂
)−1

F ′s

= T−1z′F̂ (F ′F )
−1
(
F̂
′
F̂ − F̂ ′F

)(
F̂
′
F̂
)−1

F ′s+

T−1z′F̂ (F ′F )
−1
(
F̂
′
F − F ′F

)(
F̂
′
F̂
)−1

F ′s

= T−1z′F̂ (F ′F )
−1
F̂
′ (
F̂ − F

)(
F̂
′
F̂
)−1

F ′s+

T−1z′F̂ (F ′F )
−1
(
F̂ − F

)′
F
(
F̂
′
F̂
)−1

F ′s

= Op (c1,N,T ) +Op (c2,N,T )
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Note that by Lemma A1 of Bai and Ng (2006), we have that for PC factor estimation

T−1z′
(
F−F̂

)
= Op

(
min (N, T )−1)

and

T−1
(
F̂ − F

)′ (
F̂ − F

)
= Op

(
min (N, T )−1) ,

so that for this factor estimator c1,N,T = c2,N,T = min (N, T )−1. It follows that both T−1z′MF̂xi
and T−1z′MF̂xi are Op

(
min (N, T )−1), and using (65) we have γ̂∗iz = Op (1) .

Next consider tiz =
[
V̂ar (γ̂∗iz)

]−1/2

γ̂∗iz, where V̂ar (γ̂∗iz) = (z′MF̂ z)−1 T−1
∑T

t=1 v̂
2
it, and hence

tiz =

(
T−1

T∑
t=1

v̂2
it

)−1/2

(z′MF̂ z)
−1/2

z′MF̂xi.

It is also easily seen that T−1
∑T

t=1 v̂
2
it = Op (1), and

T−1z′MF̂ z = Op

(
min (N, T )−1) , T−1z′MF̂xi = Op

(
min (N, T )−1) .

So overall tiz = Op

(
min (N, T )−1/2 T 1/2

)
, implying that a standard t-statistic to test the sta-

tistical significance of γ∗i need not diverge if zi is a pervasive unit.
Now consider an alternative simplified t-type statistic of the form

t∗iz =
γ̂i√

T−1
∑T
t=1 v̂

2
it

z′z

= (z′z)
1/2

(
T−1

T∑
t=1

v̂2
it

)−1

(z′MF̂ z)
−1

z′MF̂xi

= Op

(
T 1/2

)
We therefore note that, unlike the standard t statistic which does not necessarily diverge if z

is pervasive, t∗iz does diverge at the usual rate.
Under the case where the z is not pervasive and assuming that pmax is large enough to span

the true factors, it is obvious that tiz = Op (1) and t∗iz = Op (1). Using arguments similar to the
rest of the paper (consider, e.g., the proofs of (59)-(61) and Lemma 2) we can further show that,
using standard multiple testing critical values cN = O

(
ln(N)1/2

)
, we can make 1−Pr (t∗iz > cN)

exponentially small if z denotes a pervasive unit and Pr (t∗iz > cN) exponentially small if z
denotes a non-pervasive unit.

B Auxiliary Lemmas

This section provides statements and proofs of the lemmas used in the paper. First we provide
a lemma handling the remainder terms of Nσ̂2

iT . We have

Lemma 1 Let i denote a pervasive unit, Assumptions 1-4 hold and
√
N
T
→ 0. Then,

Nσ̂2
iT =

a′iA0V
′MF̂VA0ai
NT

+Op

(
1

δNT

)
+Op

(√
N

δ2
NT

)
,

where δ2
NT = min(N, T ).
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Proof. Since unit i is pervasive then using (28) we note that

Nσ̂2
iT =

a′iA0V
′MF̂VA0ai
NT

+
6∑
j=2

Bij,

where Bij for j = 2, 3, ..., 6 are given by (30)-(34) which we reproduce here for convenience

Bi2 = 2
a′iA

′
0V
′MF̂V

(
A0 − Â

)
ai

NT
,

Bi3 = 2
a′iA

′
0V
′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
,

Bi4 =
a′i

(
A0 − Â

)′
V′MF̂V

(
A0 − Â

)
ai

NT
,

Bi5 = 2
a′i

(
A0 − Â

)′
V′MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
,

Bi6 =
a′i

(
A0 − Â

)′
A0

(
F0 − F̂

)′
MF̂

(
F0 − F̂

)
A′0

(
A0 − Â

)
ai

NT
.

First, note that

‖Bi2‖ ≤
2

NT
‖ai‖2 ‖A′0V′‖ ‖MF̂‖

∥∥∥V (A0 − Â
)∥∥∥ .

But ‖MF̂‖ = 1, since MF̂ is an idempotent matrix. Furthermore, supi ‖ai‖
2 < C, by Assump-

tion 2. Together with (C) and (D) of Proposition 1, these two results imply

‖Bi2‖ =
1

NT
Op

(√
NT

)
Op

(√
NT

δNT

)
= Op

(
1

δNT

)
.

Similarly, using (A), (D) and (E) of Proposition 1,

‖Bi3‖ ≤
C

NT
‖A′0V′‖

∥∥∥F0 − F̂
∥∥∥∥∥∥A′0(A0 − Â

)∥∥∥
=

1

NT
Op

(√
NT

)
Op

(√
T

δNT

)
Op

(
N

δNT

)

= Op

(√
N

δ2
NT

)
.

Next,

‖Bi4‖ ≤
C

NT

∥∥∥V (A0 − Â
)∥∥∥2

= Op

(
1

δ2
NT

)
,
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follows from (C). Using this latter result, as well as (A) and (E), we also obtain

‖Bi5‖ ≤
C

NT

∥∥∥V (A0 − Â
)∥∥∥∥∥∥F0 − F̂

∥∥∥∥∥∥A′0(A0 − Â
)∥∥∥

=
1

NT
Op

(√
NT

δNT

)
Op

(√
T

δNT

)
Op

(
N

δNT

)

= Op

(√
N

δ3
NT

)
.

Finally,

‖Bi6‖ ≤
C

NT

∥∥∥A′0(A0 − Â
)∥∥∥2 ∥∥∥F0 − F̂

∥∥∥2

=
1

NT
Op

(
N2

δ2
NT

)
Op

(
T

δ2
NT

)
= Op

(
N

δ4
NT

)
,

by the same intermediate results. Summarizing the order results above and noting that
√
N
T
→ 0,

we have

Nσ̂2
iT =

a′iA
′
0V
′MF̂VA0ai
NT

+Op

(
1

δNT

)
+Op

(√
N

δ2
NT

)
,

proving the required result.

Lemma 2 Let Assumptions 1-4 hold. Then,

Pr

[
sup
i

(
1

T

T∑
t=1

xjit

)
> C

]
= o(1), j = 1, 2, 3, 4.

Proof. We will prove the case for j = 4 only. The cases for j = 1, 2, 3 follow straightforwardly.
We have

xit = a′ift + vit = ϕit + vit,

So

x4
it = ϕ4

it + 4ϕ3
itvit + 6ϕ2

itv
2
it + 4ϕitv

3
it + v4

it =
5∑
j

Ajit.

So

Pr

[
sup
i

(
1

T

T∑
t=1

x4
it

)
> C

]
= Pr

[
sup
i

[
5∑
j=1

(
1

T

T∑
t=1

Ajit

)]
> C

]

≤ Pr

[
5∑
j=1

sup
i

(
1

T

T∑
t=1

Ajit

)
> C

]

≤
5∑
j=1

Pr

[
sup
i

(
1

T

T∑
t=1

Aijt

)
> πjC

]
=

5∑
j=1

Bj,
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where πj > 0, and
∑5

j=1 πj = 1. We examine each Bj in turn. We have that for sufficiently
large finite constant C, there exists some constant C1 such that

Pr

[
sup
i

(
1

T

T∑
t=1

Ai1t

)
> π1C

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

(a′ift)
4

∣∣∣∣∣ > π1C

]

= Pr

[(
sup
i
‖ai‖4

) ∣∣∣∣∣ 1

T

T∑
t=1

‖ft‖4

∣∣∣∣∣ > π1C

]

≤ Pr

[∣∣∣∣∣
T∑
t=1

[
‖ft‖4 − E

(
‖ft‖4)]∣∣∣∣∣ > Tπ1C1

]
.

However, since by Assumption 1, 1
T

∑T
t=1

[
‖ft‖4 − E

(
‖ft‖4)] = op (1),

Pr

[∣∣∣∣∣
T∑
t=1

‖ft‖4 − E
(
‖ft‖4)∣∣∣∣∣ > Tπ1C1

]
= o (1) ,

for any finite C1 > 0. For B2 − B5 it is sufficient to note that Ajit, j = 2, . . . , 5 are martingale
difference processes since ϕit and vit are independent and vjit − E

(
vjit
)
, for j = 1, 2, 3, 4 are

martingale difference processes by the serial independence of εt (see Assumption 3). Therefore,
by the martingale difference exponential inequality Lemma A3 of Chudik, Kapetanios, and
Pesaran (2018), we have that for j = 1, . . . , 4, and for a sufficiently large finite constant, C,
there exist some constants C1 and C2 such that

Pr

[
sup
i

(
1

T

T∑
t=1

Aijt

)
> πjC

]
≤ Pr

[
sup
i

∣∣∣∣∣ 1

T

T∑
t=1

Aijt − E (Aijt)

∣∣∣∣∣ > πjC1

]
≤ exp (−C2T ) ,

proving the result.

The rest of the lemmas in this section prove the results of Proposition 1 in the main text.
The five results A–E are analyzed in separate lemmas due to the length of the proofs. It is also
important to note that the required assumptions for the subsequent lemmas are considerably
weaker than those needed for consistency of the σ2 thresholding procedure. The minimal
conditions needed, which are satisfied by Assumptions 1–4 in the main text, as noted in Remark
2, are as follows:

1. E||ft||4 ≤ C < ∞, T−1
∑T

t=1 ftf
′
t

p→ Σf for some m ×m positive definite matrix Σf . A0

has bounded elements. Further ||N−1A′0A0−D|| → 0, as N →∞, where D is a positive
definite matrix.

2. E(vit) = 0, E|vit|8 ≤ C where vt = (v1t, . . . , vNt)
′ The variance of vt is denoted by Σv. fs

and vt are independent for all s, t.

3. For τi,j,t,s ≡ E(vitvjs) the following hold

• (NT )−1
∑T

s=1

∑T
t=1 |

∑N
i=1 τi,i,t,s| ≤ C.

•
∑T

l=1 |1/N
∑N

i=1 τi,i,s,l| ≤ C for all s.
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• N−1
∑N

i=1

∑N
j=1 |τi,j,s,s| ≤ C.

• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ C.

• For every (t, s), E|(N)−1/2
∑N

i=1(visvit − τi,i,s,t)|4 ≤ C.

• For each t, 1√
N

∑N
i=1 aivit →d N (0,Γt) where Γt = limN→∞

∑N
i=1

∑N
j=1E

(
aia
′
jvitvjt

)
.

The above list is essentially the set of assumptions in Bai (2003). Analogous to the definition
in Section A.1, let γst = γN,st = 1

N

∑N
i=1 τi,i,t,s.

Lemma 3 Under Assumptions 1–4∥∥∥∥∥∥
V
(
Â−A0

)
N

∥∥∥∥∥∥
F

= Op

( √
T√

N min(N, T )

)
= Op

(√
T

N

)
+Op

(
1√
N

)
.

Proof.
We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that

âi − ai =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
. (66)
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We have

1

N2

∥∥∥V (Â−A0

)∥∥∥2

F
=

1

N2

T∑
t=1

N∑
i=1

v2
i (âi − ai)

′ (âi − ai)

≤ 1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

f ′sfsv
2
is +

1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N2

T∑
t=1

N∑
i=1

v2
it

 1
T 2

∑T
s=1 x

2
is

∥∥∥f̂s − fs

∥∥∥2

F
+

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′|

∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

+

1

N2

T∑
t=1

N∑
i=1

v2
it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
=

1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

f ′sfsv
2
is

)
+

1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)
+

1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)
+

1

N2

T∑
t=1

N∑
i=1

v2
it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]

=
5∑
i=1

Ci

We have

C1 =
1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T

T∑
s=1

f ′sfsv
2
is

)
=

1

N2

N∑
i=1

(
1

T

T∑
s=1

f ′sfsv
2
is

)(
1

T

T∑
t=1

v2
it

)
= Op

(
N−1

)
.

Also

C2 =
1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)

=
1

N2

1

T

T∑
t=1

N∑
i=1

v2
it

[
1√
T

T∑
s=1

visf
′
s

(
1√
T

T∑
s′,s 6=s′

fs′vis′

)]
= Op

(
N−1

)
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Next, we have

C3 =
1

T 2N2

T∑
t=1

N∑
i=1

v2
it

(
T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)

=
m∑
j=1

[
1

T 2N2

T∑
t=1

N∑
i=1

v2
it

(
T∑
s=1

x2
is

(
f̂js − fjs

)2
)]
≤

max
j

1

T 2N2

T∑
t=1

N∑
i=1

v2
it

(
T∑
s=1

x2
is

(
f̂js − fjs

)2
)
.

But

1

T 2N2

T∑
t=1

N∑
i=1

v2
it

(
T∑
s=1

x2
is

(
f̂js − fjs

)2
)

=

1

TN2

T∑
s=1

N∑
i=1

(
1

T

T∑
t=1

v2
it

)
x2
is

(
f̂js − fjs

)2

=
1

TN2

T∑
s=1

N∑
i=1

zis

(
f̂js − fjs

)2

,

where zit =
(

1
T

∑T
s=1 v

2
is

)
x2
it. Note that supi,tE (z2

it) <∞. Then, by a similar analysis to term

A1 in (67) of Lemma 5,
C3 = Op

(
N−1 min(N, T )−1

)
.

Further,

C4 =
1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)

≤ 1

N2

T∑
t=1

N∑
i=1

v2
it


(

1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2(

1
T 2

∑T
s=1

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2

F

∥∥∥f̂s′ − fs′
∥∥∥2

F

)1/2



≤ 1

N2

T∑
t=1

N∑
i=1

v2
it


(

1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2{

1
T

∑T
s=1

[∥∥∥f̂s − fs

∥∥∥2

F

(
1
T

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2

F

)]}1/2


≤

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2

F

)
 1

N2

T∑
t=1

N∑
i=1

v2
it

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′ |

)1/2
 .

But

sup
i
E

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2

= O (1) ,
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and therefore  1

N2

T∑
t=1

N∑
i=1

v2
it

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2
 = Op

(
TN−1

)
.

Further,

E

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2

F

)
= O

[
min(N, T )−1

]
,

and overall we have C4 = Op

(
T

N min(N,T )

)
. Finally,

1

N2

T∑
t=1

N∑
i=1

v2
it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]

=

[
1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T

T∑
s=1

visf
′
s

)][
1

T

T∑
s=1

xis′
(
f̂s′ − fs′

)]
.

But using Lemma A.1 of Bai (2003) and supi,tE (x2
it) <∞,∥∥∥∥∥ 1

T

T∑
s=1

xis′
(
f̂s′ − fs′

)∥∥∥∥∥
F

= Op

[
min(N, T )−1

]
,

and
1

N2

T∑
t=1

N∑
i=1

v2
it

(
1

T

T∑
s=1

visf
′
s

)
= Op

(
TN−1

)
.

So, we have

1

N2

T∑
t=1

N∑
i=1

v2
it

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
= Op

[
TN−1 min(N, T )−1

]
,

and hence∥∥∥∥∥∥
V
(
Â−A0

)
N

∥∥∥∥∥∥
F

= Op

(
N−1/2

)
+Op

( √
T√

N min(N, T )

)
= Op

( √
T√

N min(N, T )

)
.

Lemma 4 Under Assumptions 1–4,∥∥∥F̂− F0

∥∥∥2

F

T
= Op

(
1

min(N, T )

)
.

Proof.
Since

1

T

∥∥∥F̂− F0

∥∥∥2

F
=

1

T

T∑
t=1

∥∥∥f̂t − ft

∥∥∥2

F
,

then the required result follows immediately from Theorem 1 of Bai and Ng (2002).
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Lemma 5 Under Assumptions 1–4,∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
F

= Op

(√
N

T

)
+Op

(
1√
T

)
+Op

(
N1/4

T 3/4

)
.

Proof. We have that∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
2

F

=
N∑
i=1

m∑
j=1

[
1

T

T∑
t=1

vit

(
f̂jt − fjt

)]2

≤ max
j

N∑
i=1

[
1

T

T∑
t=1

vit

(
f̂jt − fjt

)]2

.

But,

N∑
i=1

[
1

T

T∑
t=1

vit

(
f̂jt − fjt

)]2

=
1

T 2

N∑
i=1

T∑
t=1

v2
it

(
f̂jt − fjt

)2

+

2

T 2

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
f̂jt − fjt

)(
f̂js − fjs

)
= A1 + A2. (67)

By equation (58) we can write

f̂jt − fjt =
1

T

T∑
l=1

f̂jlγlt +
1

T

T∑
l=1

f̂jlζlt +
1

T

T∑
l=1

f̂jlκlt +
1

T

T∑
l=1

f̂jlξlt,

where ζlt = N−1v′lvt − γlt, κlt = N−1f ′lA
′
0vt, and ξlt = κtl. We have

1

T 2

N∑
i=1

T∑
t=1

v2
it

(
f̂jt − fjt

)2

≤ 4

T 2

N∑
i=1

T∑
t=1

v2
it

(
1

T

T∑
l=1

f̂jlγlt

)2

+

4

T 2

N∑
i=1

T∑
t=1

v2
it

(
1

T

T∑
l=1

f̂jlζlt

)2

+

4

T 2

N∑
i=1

T∑
t=1

v2
it

(
1

T

T∑
l=1

f̂jlκlt

)2

+

4

T 2

N∑
i=1

T∑
t=1

v2
it

(
1

T

T∑
l=1

f̂jlξlt

)2

= A11 + A12 + A13 + A14.

Now,

A11 =
1

T 4

N∑
i=1

T∑
t=1

v2
it

(
T∑
l=1

f̂jlγlt

)2

≤

(
1

T

T∑
l=1

f̂ 2
jl

)
1

T 3

N∑
i=1

T∑
t=1

v2
it

(
T∑
l=1

γ2
lt

)
.

But T−1
∑T

l=1 f̂
2
jl = Op(1), and

∑T
l=1 γ

2
lt < C. Hence

N∑
i=1

T∑
t=1

v2
it

(
T∑
l=1

γ2
lt

)
≤ C

N∑
i=1

T∑
t=1

v2
it = Op (TN) .
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So

A11 =
1

T 4

N∑
i=1

T∑
t=1

v2
it

(
T∑
l=1

f̂jlγlt

)2

= Op

(
NT−2

)
.

Next

A12 =
1

T 2

N∑
i=1

T∑
t=1

v2
it

(
1

T

T∑
l=1

f̂jlζlt

)2

=
1

T 4

N∑
i=1

T∑
t=1

v2
it

(
T∑
l=1

f̂jlζlt

)2

=
1

T 4

(
T∑
l=1

T∑
u=1

f̂jlf̂ju

T∑
t=1

ζltζut

(
N∑
i=1

v2
it

))
≤

N

T 2

[
1

T 2

T∑
l=1

T∑
u=1

(
f̂jlf̂ju

)2
]1/2

 1

T 2

T∑
l=1

T∑
u=1

[
T∑
t=1

ζltζut

(
1

N

N∑
i=1

v2
it

)]2


1/2

≤ N

T 2

(
1

T

T∑
l=1

f̂ 2
jl

) 1

T 2

T∑
l=1

T∑
u=1

[
T∑
t=1

ζltζut

(
1

N

N∑
i=1

v2
it

)]2


1/2

.

But

E

( T∑
t=1

ζltζut

(
1

N

N∑
i=1

v2
it

))2
 ≤ T 2N−2.

So

A12 =
N

T 2
·Op (1) ·

√
T 2N−2 = Op

(
T−1

)
.

Next,

A13 =
4

T 2

N∑
i=1

T∑
t=1

v2
it

(
1

T

T∑
l=1

f̂jlκlt

)2

=
4

N2T 2

N∑
i=1

T∑
t=1

v2
it

1

T 2

(
T∑
l=1

f̂jlf
′
lA
′
0vt

)2

≤(
1

T

T∑
l=1

f̂ 2
jl

)(
1

T

T∑
l=1

‖fl‖2

)
4

NT 2

T∑
t=1

(
1

N

N∑
i=1

v2
it

)
‖A′0vt‖

2

=

(
1

T

T∑
l=1

f̂ 2
jl

)(
1

T

T∑
l=1

‖fl‖2

)
4

T 2

T∑
t=1

(
1

N

N∑
i=1

v2
it

)∥∥∥∥A′0vt√
N

∥∥∥∥2

= Op

(
T−1

)
.

Similarly for A14. So, overall

A1 = Op

(
NT−2

)
+Op

(
T−1

)
= Op

(
N

T min(N, T )

)
.

Next we consider A2, and note that
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(
f̂jt − fjt

)(
f̂js − fjs

)
=

(
1

T

T∑
l=1

f̂jlγlt +
1

T

T∑
l=1

f̂jlζlt +
1

T

T∑
l=1

f̂jlκlt +
1

T

T∑
l=1

f̂jlξlt

)

×

(
1

T

T∑
l=1

f̂jlγls +
1

T

T∑
l=1

f̂jlζls +
1

T

T∑
l=1

f̂jlκls +
1

T

T∑
l=1

f̂jlξls

)

=
1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltγus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltζus+

2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltκus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juγltξus+

1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juζltζus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juζltκus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juζltξus+

1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juκltκus +
2

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juκltξus +
1

T 2

T∑
l=1

T∑
u=1

f̂jlf̂juξltξus.

Therefore

A2 =
2

T 2

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
f̂jt − fjt

)(
f̂js − fjs

)
=

10∑
i=1

A2i.

Denoting equality in order of probability by A ∼ B, we proceed term by term noting that
A23 ∼ A24, A26 ∼ A27 and A28 ∼ A210. So the terms to consider are A21, A22, A23, A25, A26,
A28 and A29. Starting with A21 we have

A21 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juγltγus

)

=
2

T 4

N∑
i=1

T∑
l=1

T∑
u=1

f̂jlf̂ju

(
T∑
t=1

T∑
s=1

vitvisγltγus

)

≤ 2

T 2

N∑
i=1


(

1
T 2

∑T
l=1

∑T
u=1

(
f̂jlf̂ju

)2
)1/2

[
1
T 3

∑T
l=1

∑T
u=1

(∑T
t=1

∑T
s=1 vitvisγltγus

)2
]1/2


=

 2

T 2

N∑
i=1

 1

T 2

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltγus

)2
1/2


(

1

T

T∑
u=1

f̂ 2
ju

)
.

But, due to summability of γlt

E

( T∑
t=1

T∑
s=1

vitvisγltγus

)2
 ≤ T C.
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Noting further that, again due to summability of γlt, the double sum over l and u will only
have terms bounded away from zero if l and u are close we obtain

E

 1

T 2

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltγus

)2
 = O (1) ,

and hence A21 = Op (NT−2). Consider now

A22 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juγltζus

)

=
2

T 4

N∑
i=1

T∑
l=1

T∑
u=1

f̂jlf̂ju

(
T∑
t=1

T∑
s=1

vitvisγltζus

)

≤ 2

T 3/2

N∑
i=1


(

1
T 2

∑T
l=1

∑T
u=1

(
f̂jlf̂ju

)2
)1/2

[
1
T 3

∑T
l=1

∑T
u=1

(∑T
t=1

∑T
s=1 vitvisγltζus

)2
]1/2


≤

 2

T 3/2

N∑
i=1


 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltζus

)2
1/2


×( 1

T

T∑
u=1

f̂ 2
ju

)
.

But

E

( T∑
t=1

T∑
s=1

vitvisγltζus

)2
 ≤ T 2N−1.

Further, due to summability of γlt the double sum over l and t will only have terms bounded
away from zero if l and t are close so

E

 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltζus

)2
 = O

(
N−1

)
, (68)

and as a result A22 = Op

(
N1/2T−3/2

)
. Next, and similarly to the previous terms

A23 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juγltκus

)
≤

≤

 2

T 3/2

N∑
i=1


 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisγltκus

)2
1/2


( 1

T

T∑
u=1

f̂ 2
ju

)
,

which again, by a manipulation similar to that used for (68), yields A23 = Op

(
N1/2T−3/2

)
.
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Next,

A25 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juζltζus

)

=
2

T 4

N∑
i=1

[
T∑
l=1

T∑
u=1

f̂jlf̂ju

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)]

≤ 2

T

N∑
i=1


(

1
T 2

∑T
l=1

∑T
u=1

(
f̂jlf̂ju

)2
)1/2

[
1
T 4

∑T
l=1

∑T
u=1

(∑T
t=1

∑T
s=1 ζltζusvitvis

)2
]1/2


≤ 2

T

N∑
i=1


(

1

T

T∑
u=1

f̂ 2
ju

) 1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)2
1/2

 .

But, by absolute summability of the autocovariance of vit,

E

( T∑
t=1

T∑
s=1

ζltζusvitvis

)2
 ≤ CT 2E

(
ζ4
lt

)
≤ CT 4N−2.

So  1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)2
1/2

= Op

(
N−1

)
,

2

T

N∑
i=1


(

1

T

T∑
u=1

f̂ 2
ju

) 1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

ζltζusvitvis

)2
1/2

 = Op

(
T−1

)
,

and A25 = Op (T−1). Next

A26 =
2

T 4

N∑
i=1

T∑
t=1

T∑
s=1

vitvis

(
T∑
l=1

T∑
u=1

f̂jlf̂juζltκus

)
≤

≤

 2

T

N∑
i=1


 1

T 4

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisζltκus

)2
1/2


( 1

T

T∑
u=1

f̂ 2
ju

)
.

But

E

( T∑
t=1

T∑
s=1

vitvisζltκus

)2
 ≤ T 2N−2,

and

E

 1

T 3

T∑
l=1

T∑
u=1

(
T∑
t=1

T∑
s=1

vitvisζltκus

)2
 = O

(
N−2

)
.
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So A26 = Op (T−1). Similarly, we obtain A28 = Op (T−1) and A29 = Op (T−1). Collecting the
terms, we have

A2 = Op

(
NT−2

)
+Op

(
N1/2T−3/2

)
+Op

(
T−1

)
.

Thus ∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
2

F

= Op

(
NT−2

)
+Op

(
T−1

)
+Op

(
N1/2T−3/2

)
,

and hence ∥∥∥∥∥∥
V′
(
F̂− F0

)
T

∥∥∥∥∥∥
F

= Op

(
N1/2T−1

)
+Op

(
T−1/2

)
+Op

(
N1/4T−3/4

)
.

Lemma 6 Under Assumptions 1–4,∥∥∥Â−A0

∥∥∥2

F

N
= Op

(
1

min(N, T )

)
,

and ∥∥∥A′0 (Â−A0

)∥∥∥
F

= Op

(
N√

min(N, T )

)
. (69)

Proof. We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that

âi − ai =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
.
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This result can be used to obtain

1

N

∥∥∥(Â−A0

)∥∥∥2

F
=

1

N

N∑
i=1

(âi − ai)
′ (âi − ai)

≤ 1

N

N∑
i=1

(
1

T 2

T∑
s=1

f ′sfsv
2
is +

1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N

N∑
i=1

 1
T 2

∑T
s=1 x

2
is

∥∥∥f̂s − fs

∥∥∥2

F
+

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′ |

∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

+

2

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

))
=

1

N

N∑
i=1

(
1

T 2

T∑
s=1

f ′sfsv
2
is

)
+

1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)
+

1

N

N∑
i=1

(
1

T 2

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)
+

1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)
+

2

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

))

=
5∑
i=1

Ci.

We have

C1 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

f ′sfsv
2
is

)
= Op

(
T−1

)
.

Also

C2 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sfs′visvis′

)

=
1

N

1

T

N∑
i=1

[
1√
T

T∑
s=1

visf
′
s

(
1√
T

T∑
s′,s 6=s′

fs′vis′

)]
= Op

(
T−1

)
,
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and

C3 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)

=
1

min(N, T )NT

N∑
i=1

(
min(N, T )

T

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)
= Op

(
T−1 min(N, T )−1

)
,

noting that by Lemma A.1 of Bai (2003) and supi suptE (x2
it) <∞,

sup
i
E

(
min(N, T )

T

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)2

= O(1).

Further,

C4 =
1

N

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)

≤ 1

N

N∑
i=1


(

1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2(

1
T 2

∑T
s=1

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2

F

∥∥∥f̂s′ − fs′
∥∥∥2

F

)1/2



≤ 1

N

N∑
i=1


(

1
T 2

∑T
s=1

∑T
s′,s 6=s′ (xisxis′)

2
)1/2{

1
T

∑T
s=1

[∥∥∥f̂s − fs

∥∥∥2

F

(
1
T

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2

F

)]}1/2


≤

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2

F

) 1

N

N∑
i=1

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2
 .

But

sup
i
E

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2

= O (1) ,

and so

1

N

N∑
i=1

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

(xisxis′)
2

)1/2
 = Op (1) .

Further,

E

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2

F

)
= O

[
min(N, T )−1

]
.

So, overall C4 = Op

(
1

min(N,T )

)
. Finally, noting by Lemma A.1 of Bai (2003) (or can be proven

by first principles) that

sup
i

E
[

1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]2


1/2

= Op

[
min(N, T )−1

]
,
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we have

C5 =
1

N

N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
= Op

[
min(N, T )−1

]
,

So overall
1

N

∥∥∥Â−A0

∥∥∥2

F
= Op

(
1

min(N, T )

)
.

To prove (69), recall that by equation (66),

âi − ai =
1

T

T∑
t=1

ftvit +
1

T

T∑
t=1

xit

(
f̂t − ft

)
.

Define B = A′0A0. Note that every element of B is O (N) and so every element of N−1B is
bounded. We have∥∥∥A′0 (Â−A0

)∥∥∥2

F
= Tr

[(
Â−A0

)
A′0A0

(
Â−A0

)′]
=

N∑
i=1

(âi − ai)
′B (âi − ai)

≤
N∑
i=1

(
1

T 2

T∑
s=1

f ′sBf sv
2
is +

1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sBf s′visvis′

)
+

‖B‖F

 N∑
i=1

 1
T 2

∑T
s=1 x

2
is

∥∥∥f̂s − fs

∥∥∥2

F
+

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′ |

∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

+

N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
sB
(
f̂s′ − fs′

)]
=

N∑
i=1

(
1

T 2

T∑
s=1

f ′sBf sv
2
is

)
+

N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sBf s′visvis′

)
+

‖B‖F

[
N∑
i=1

(
1

T 2

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)]
+

‖B‖F

[
N∑
i=1

(
1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′ | ×∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)]
+

N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
sB
(
f̂s′ − fs′

)]

=
5∑
i=1

C̃i.

We have

C̃1 =
N∑
i=1

(
1

T 2

T∑
s=1

f ′sBf sv
2
is

)
= Op

(
NT−1

)
.
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Also

C̃2 =
N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

f ′sBf s′visvis′

)

=
1

T

N∑
i=1

[
1√
T

T∑
s=1

visf
′
sB

(
1√
T

T∑
s′,s 6=s′

fs′vis′

)]
= Op

(
NT−1

)
and

C̃3 = ‖B‖F
N∑
i=1

(
1

T 2

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)

= ‖B‖F
1

min(N, T )T

N∑
i=1

(
min(N, T )

T

T∑
s=1

x2
is

∥∥∥f̂s − fs

∥∥∥2

F

)
= Op

[
N2T−1 min(N, T )−1

]
.

Further,

C̃4 = ‖B‖F
N∑
i=1

(
1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|
∥∥∥f̂s − fs

∥∥∥
F

∥∥∥f̂s′ − fs′
∥∥∥
F

)

≤ ‖B‖F
N∑
i=1


(

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′|

)1/2(
1
T 2

∑T
s=1

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2

F

∥∥∥f̂s′ − fs′
∥∥∥2

F

)1/2



≤ ‖B‖F
N∑
i=1


(

1
T 2

∑T
s=1

∑T
s′,s 6=s′ |xisxis′|

)1/2{
1
T

∑T
s=1

[∥∥∥f̂s − fs

∥∥∥2

F

(
1
T

∑T
s′,s 6=s′

∥∥∥f̂s − fs

∥∥∥2

F

)]}1/2


≤ ‖B‖F

(
1

T

T∑
s=1

∥∥∥f̂s − fs

∥∥∥2

F

)
N∑
i=1

( 1

T 2

T∑
s=1

T∑
s′,s 6=s′

|xisxis′|

)1/2
 ,

and it follows that C̃4 = Op

(
N2

min(N,T )

)
. Finally, since

sup
i

E
[

1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]2


1/2

= Op

(
min(N, T )−1

)
,

we have

C̃5 = ‖B‖F
N∑
i=1

[
1

T 2

T∑
s=1

T∑
s′=1

xis′visf
′
s

(
f̂s′ − fs′

)]
= Op

[
N2 min(N, T )−1

]
.

So overall ∥∥∥A′0 (Â−A0

)∥∥∥2

F
= Op

(
N2

min(N, T )

)
.
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and ∥∥∥A′0 (Â−A0

)∥∥∥
F

= Op

(
N√

min(N, T )

)
,

proving the required result.
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This online supplement contains additional theoretical, simulation and empirical results that
complement the main paper. It is composed of five sections. Section S1 gives a more detailed
description of the steps required to implement the various variants of the basic σ2 thresholding
method proposed in the paper. A summary of other approaches proposed in the literature for
the detection of pervasive units is given in Section S2. The finite sample performance of the
different variants of the σ2 thresholding (that are not considered in Section 6 of the paper) is
discussed in Section S3. Two additional σ2 thresholding schemes, based on the difference and
the ratio of two successive ordered error variance estimates, are considered in Section S4 and
their small sample properties investigated using Monte Carlo simulations. Finally, Sections S5
and S6 report simulation and empirical results using an unmodified version of BM procedure.

S1 Variants of the basic σ2 thresholding Methods

This section provides a step by step description of the various refinements of the basic σ2

thresholding advanced in Section 5 of the paper. Let xi be the T × 1 vector of observations
on the i-th unit in the panel, and X = (x1,x2, . . . ,xN) be the T × N matrix of observations
on all the N units in the panel. Suppose that p ≤ pmax, where pmax is selected a priori to be
sufficiently large. Denote by X∗a the T × r matrix containing all pervasive units that have been
identified at a given step of the two algorithms described below. Analogously, let the T × N1

matrix X∗b = (xb,1; . . . ; xb,N1) contain observations for the N1 = N − r remaining cross-section
units that have not been identified as pervasive. Furthermore, let

MX∗a =

{
IT , if r = 0,

IT −X∗a(X
∗′
a X∗a)

−1X∗′a , if r > 0.
.

Given the sequential nature of the two algorithms described below, the values of r,N1,X
∗
a and

X∗b and the dimensions of the latter two matrices change as the algorithm proceeds. Further-
more, X∗a and X∗b represent an estimated partition of the data into pervasive and non-pervasive
units which is to be distinguish from the true partition X = (Xa; Xb).

Algorithm 4 (Sequential σ2 thresholding)

1. Set r = 0.

2. Compute F̂ = 1√
N

MX∗aX
∗
bQ̂, where Q̂ is the N × (pmax − r) matrix whose columns are

the orthonormal eigenvectors of X∗′b MX∗aX
∗
b , such that N−1Q̂′Q̂ = Ipmax. For each i = 1,

1



compute âi, v̂it and σ̂2
iT to be the OLS estimator, residual and residual variance of the

regression of x∗b,i on F̂, namely

âi =
(
F̂′F̂

)−1

F̂′x∗b,i,

v̂i = (v̂i1, v̂i2, . . . , v̂iT )′ = MF̂x∗b,i =

[
IT − F̂

(
F̂′F̂

)−1

F̂′
]

x∗b,i,

σ̂2
iT = T−1x∗′b,iMF̂x∗b,i.

3. Sort σ̂2
iT in ascending order and denote the sorted series σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(N)T with σ̂2

(i)T

being the i-th smallest value. Consider the cross-section indexes i1, i2, . . . , ipmax−r corre-
sponding to σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(pmax−r)T . Compute

η̂2
iN =

â′iÂ
′Σ̃vÂâi
N

,

for every j ∈ {i1, i2, . . . i,pmax−r } where Σ̃v is the multiple testing estimator of Σv by
Bailey, Pesaran, and Smith (2019), as described in Section 4.2 of the main paper. If for
all j,

σ̂2
jT >

2η̂2
jN log T

N
,

then stop the algorithm and conclude that there are m̂ = r pervasive units whose identities
are given by the indexes of the columns in X that coincide with columns in X∗a. Otherwise,
proceed to step 4.

4. Let i∗ = arg mini σ̂
2
i . Update X∗a = (X∗a; xb,i∗) and eliminate xb,i∗ from X∗b . Update,

r := r + 1 and N1 := N1 − 1 and return to step 2.

Algorithm 5 (Sequential-MT σ2 thresholding )

1. Set r = 0.

2. Compute F̂ = 1√
N

MX∗aX
∗
bQ̂, where Q̂ is the N × (pmax − r) matrix whose columns are

the orthonormal eigenvectors of X∗′b MX∗aX
∗
b , such that N−1Q̂′Q̂ = Ipmax. For each i = 1,

compute âi, v̂it and σ̂2
iT to be the OLS estimator, residual and residual variance of the

regression of x∗b,i on F̂, namely

âi =
(
F̂′F̂

)−1

F̂′x∗b,i,

v̂i = (v̂i1, v̂i2, . . . , v̂iT )′ = MF̂x∗b,i =

[
IT − F̂

(
F̂′F̂

)−1

F̂′
]

x∗b,i,

σ̂2
iT = T−1x∗′b,iMF̂x∗b,i.
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3. Sort σ̂2
iT in ascending order and denote the sorted series σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(N)T with σ̂2

(i)T

being the ith smallest value. Consider the cross-section indexes i1, i2, . . . , ipmax−r corre-
sponding to σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(pmax−r)T . Compute

η̂2
iN =

â′iÂ
′Σ̃vÂâi
N

,

for every j ∈ {i1, i2, . . . i,pmax−r } where Σ̃v is the multiple testing estimator of Σv by
Bailey, Pesaran, and Smith (2019), as described in Section 4.2 of the main paper. If for
all j,

σ̂2
jT >

2η̂2
jN log T

N
,

then stop the algorithm and conclude that there are m̂ = r pervasive units whose identities
are given by the indexes of the columns in X that coincide with columns in X∗a. Otherwise,
proceed to step 4.

4. Let i∗ = arg mini σ̂
2
i . For each j = 1, . . . i∗ − 1, i∗ + 1, . . . , N1 estimate the model

MX∗axb,j = MX∗axb,i∗γ
∗
j + f∗′t a∗j + vj,

where f∗t is a pmax− r− 1 vector of unobserved factors which we estimate as in step 2 but
using MX∗aX

∗
b,−i∗ with Xb,−i∗ = (xb,1; . . . ; xb,i∗−1; xb,i∗+1; . . . ; xb,N1) instead of MX∗aX

∗
b .

5. Apply individual significance tests to the N1−1 estimated slope parameters γ̂∗1 , . . . , γ̂
∗
i∗−1, γ̂

∗
i∗+1, . . . , γ̂

∗
N1

using the critical value Φ−1
[
1− π

2(N1−1)

]
with Φ−1(·) denoting the inverse normal CDF,

and π is set to 0.01.

6. Let M denote the number of rejections among these N1−1 tests. If log(M)/ log(N) ≤ 1/2,
stop and conclude that there are m̂ = r pervasive units whose identities are given by the
indices of the columns in X that coincide with the columns of X∗a. Otherwise proceed to
step 7.

7. Update X∗a = (X∗a; xb,i∗) and eliminate xb,i∗ from X∗b . Update, r := r+1 and N1 := N1−1
and return to step 2.

S2 Pervasive unit detection procedures proposed in the

literature

S2.1 Brownlees and Mesters (BM) procedure

The model considered in (Brownlees and Mesters, 2018, BM in the following) has an equivalent
reformulation of our pervasive unit model, formally given by

xta
m×1

= ft, (70)

xtb
n×1

= Bxta + ut, (71)
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where the covariance matrix of ft may be any positive definite matrix. Brownlees and Mesters
(2018) also allow for the presence of unobserved common factors, but we will be abstracting
from such factors to simplify the exposition.

The number of pervasive units19 and their identities are estimated from the precision matrix
(i.e. the inverse covariance matrix) of the observed data X. Formally, let

K̂ =
(
T−1X′X− xx′

)−1
,

where x = (x1; . . . ;xN)′, and xi = T−1
∑T

t=1 xit. Additionally, let K̂ =
(
k̂1 . . . k̂N

)
. BM

then compute κ̂i = ||k̂i||, i = 1, 2, . . . , N, where ||k̂i|| =

√
k̂′ik̂i. These N vector norms are

then ordered in a descending manner, denoted as κ̂(1), κ̂(2), . . . , κ̂(N). The estimated number of
pervasive units is then

m̂ = arg max
j=1,2,...,N−1

κ̂(j)

κ̂(j+1)

,

and the pervasive units are determined as columns with the norms κ̂(1), κ̂(2), . . . , κ̂(m̂). Monte
Carlo simulations and empirical applications in the main paper employ a slight modification
of this procedure, also used in Section 6 of Brownlees and Mesters (2018), whereby the above
maximization problem is solved with respect to the first N/2 ratios instead of all N − 1 ratios.
Supplementary simulation results obtained without this modification are reported in Sections
S5 and S6.

BM detection method is subject to two main shortcomings. First, estimation of the precision
matrix requires T > N . Second, by construction the estimated number of pervasive units is
at least one. Consequently, it is impossible to use the BM procedure to investigate whether
there is in fact any pervasive unit in the panel data set under consideration. As an illustration
consider the simple factor specification

xit = βift + uit, (72)

where ft ∼ (0, 1) is the common factor, βi is the factor loading with sup
i
|βi| < K, and uit is the

unit-specific component which we assume to be IID (0, σ2) over all i and t, i = 1, 2, . . . , N ; t =
1, 2, . . . , T . Assuming that σ2 > 0 ensures that there is no pervasive unit in this model. Let
xt = (x1t, x2t, . . . , xNt)

′, β = (β1, β2, . . . , βN) , and ut = (u1t, u2t, . . . , uNt) , and write (72) as

xt = βft + ut, (73)

and note that
Cov (xt) = Σ = ββ′ + σ2IN . (74)

Then,

K=
(

k1 k2 · · · kN
)

=Σ−1 =
(
σ2IN + ββ′

)−1
=

1

σ2

(
IN −

δδ′

1 + δ′δ

)
, (75)

where δ = (δ1, δ2, . . . , δN)′ and δi = βi/σ. Then, it is easily seen that

‖ki‖2 =
1

σ4

[(
1− δδ′

1 + δ′δ

)2

+
δ2
i

∑N
j 6=i δ

2
j

(1 + δ′δ)
2

]
. (76)

19Brownlees and Mesters (2018) employ the term granular shocks instead of pervasive units.
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Suppose that β′ β = σ2δ′δ = Θ (Nα) , with α = 1, signifying ft to be strong. Then, ‖ki‖2 =
1
σ4 δ

2
i

δδ′

(1+δ′δ)2
, and hence, as N →∞,

lim
N→∞

‖ki‖
‖ks‖

=
|δi|
|δs|

=
|βi|
|βs|

, (77)

and ‖ki‖ is maximized for the unit with the largest factor loading in absolute value.
The same result holds if we allow the variance of uit to vary over i. In such a case the

relevant measure is |βi| /σ2
i , where σ2

i = V (uit), with 0 < σ2
i < K. Thus, the column norms of

the concentration matrix measure the relative importance of the common factors for the units
in the panel, and is not informative about the importance of the unit for the rest of the units
in the panel (network).

S2.2 Parker and Sul (PS) procedure

The pervasive leader framework of (Parker and Sul, 2016, henceforth PS) is primarily aimed at
investigating whether a time series external to the dataset at hand is one of the latent factors
driving the observed data. However, this framework can be represented in terms of the model
(70)–(71) by simply including the potential pervasive unit(s) into the dataset (see also Parker
and Sul, 2016, p.229). The pervasive leader framework also deals with approximate pervasive
leaders which will not be considered here.

The key idea of PS is whether a known potential pervasive unit can replace one of the factor
estimates obtained from the factor model representation of the pervasive unit model. If so,
then this candidate unit is identified as pervasive.

PS assume a priori knowledge of a fixed number r of potential pervasive units, denoted as
G = (g1,g2, . . . ,gr). Each time series in the dataset is standardized and the true number of
factors in the data is determined. In order to avoid a subjective choice, we let pmax = #̂(X)
where #̂(X) denotes the number of factors in X minimizing the the ICp2 criterion of Bai and

Ng (2002).20 Subsequently, the factor estimates F̂ are obtained as
√
T times the eigenvectors

corresponding to the pmax largest eigenvalues of N−1XX′. Now, for each potential pervasive
unit g`, ` = 1, . . . , pmax, Parker and Sul consider the pmax regression models

xit = γi,1gt,` + αi,2f̂t,2 + . . .+ αi,pmax f̂t,pmax + η
(1)
it ,

xit = αi,1f̂t,1 + γi,2gt,` + . . .+ αi,pmax f̂t,pmax + η
(2)
it ,

...

xit = αi,1f̂t,1 + αi,2f̂t,2 + . . .+ γi,pmaxgt,` + η
(pmax)
it ,

for i = 1, 2, . . . , N . Let Ĥ(1) =
(
η̂

(1)
1t , . . . , η̂

(1)
Nt

)
, . . . , Ĥ(pmax) =

(
η̂

(m̂0)
1t , . . . , η̂

(pmax)
Nt

)
denote the

OLS residuals of the pmax regression models above. If at least one among #̂
(
Ĥ(1)

)
, . . . , #̂

(
Ĥ(pmax)

)
is equal to zero then g` is considered as a pervasive unit.

PS suggest a further step if any of the units in the dataset is selected as pervasive. For each

20In application of the Bai-Ng selection procedure, we set the maximum number of factors to 10.
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unit xi, the authors consider the pmax regression models

f̂t,1 = c
(1)
1,ixit + c

(1)
2,i f̂t,2 + . . .+ c

(1)
pmax,i

f̂t,pmax + ζ
(1)
t ,

f̂t,2 = c
(2)
1,i f̂t,1 + c

(2)
2,ixit + . . .+ c

(2)
pmax,i

f̂t,pmax + ζ
(2)
t ,

...

f̂t,m̂0 = c
(pmax)
1,i f̂t,1 + c

(pmax)
2,i f̂t,2 + . . .+ c

(pmax)
pmax,i

xit + ζ
(pmax)
t .

The coefficients of determination R2
1,i, . . . , R

2
pmax,i for these pmax regression equations are ob-

tained. Having done this for every i = 1, 2, . . . , N , the R2 values for the first model above,
denoted by R2

1,1, . . . , R
2
1,N , are ordered in a descending manner. The units with the coefficient

of determination R2
1,(1), . . . , R

2
1,(r∗) are chosen as r∗ potential pervasive units. This procedure

is repeated for the remaining pmax − 1 models as set out above, providing in total r = r∗pmax
potential pervasive units (duplicates included). A guideline for the choice of r∗ is “[. . . ] around
10% of the size of N .” (Parker and Sul, 2016, p.232).

The PS procedure is subject to two limitations. First, Parker and Sul (2016, p.230) ac-
knowledge that treating all units in the sample as potential pervasive units may lead to a
non-negligible probability of making a Type I error. However, this problem is not solved by
restricting the number of potential pervasive units to 10% of the number of cross-sections. Sec-
ond, the performance of the procedure depends crucially on the choice of m, the number of
factors, and how well it is estimated. If m is underestimated not all true pervasive units may
be chosen. If it is overestimated, non-pervasive units may falsely be identified as pervasive.

S3 Finite sample performance of alternative σ2 thresh-

olding methods

As discussed in Section 5 of the paper, it is possible to apply certain refinements to the σ2

thresholding method in order to improve its finite sample properties. Our preference for the
sequential-MT σ2 thresholding is based on its finite sample performance relative to a number of
other modified versions of the basic method. This section provides simulation results to support
our choice.

The σ2 thresholding variations considered are as follows:

1. σ2 thresholding, as described by Algorithm 1 in the paper.

2. S−σ2 thresholding, as described by Algorithm 4 given above, or Algorithm 2 in the paper.

3. Sequential-MT σ2 thresholding with an alternative threshold. This method coincides with
Algorithm 5 except for the application of the threshold specified in Section A.3 for the σ2

thresholding step.

We conduct simulation experiments identical to those in Section 6 of the paper, and report
the performance of σ2 thresholding, as discussed in Section 4.2, as well as S−σ2 thresholding,
and the SMT−σ2 thresholding with an alternative scaling, as set out above. As before, our
performance measures are (a) the percent probability of correctly determining only the true
pervasive units, and (b) the average number of units falsely selected as pervasive.
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Tables S3.1 and S3.2 report results for the case where there is no pervasive unit. The
performance of the four measures considered differs only with respect to whether they involve a
multiple testing hurdle or not. Algorithms that include this extra step perform better, especially
when the DGP includes an external factor. This observation suggests that the multiple testing
hurdle makes a noticeable contribution to minimizing the probability of falsely discovering a
pervasive unit.

Noticeable differences between all four algorithms begin to emerge when the number of
pervasive units is at least equal to one. As reported in Table S3.3, the performance of σ2

thresholding declines considerably when the total number of factors, both pervasive units and
external factors, is larger than one. This problem is somewhat mitigated if one considers S−σ2

thresholding. However, this method often fails to correctly detect the true pervasive units when
T > N , and there are external factors affecting the observations. The multiple testing hurdle in
SMT−σ2 thresholding addresses this problem and leads to substantial performance gains, thus
making it our method of choice. Finally, considering the alternative scaling of the threshold
value (variant 3 above) leads to ambiguous results: improved performance is obtained when N
is much larger than T , in the case where there are two pervasive units and at least one external
factor. However, the opposite result is obtained if N is only twice as large as T . For this reason,
we discard the alternative thresholding even though it certainly has benefits in samples where
N − T is sufficiently large.

Summary results for the number of units falsely detected as pervasive are reported in Table
S3.4, and suggest that all the four methods generally perform well in this respect and do not
severely overestimate the number of pervasive units. However, there is some evidence of false
discovery when k0 = 2, and N and T are relatively small.

Qualitatively similar results are obtained when we consider Monte Carlo designs with weakly
pervasive units. Table S3.5 summarizes the results when α = 0.8. As can be seen these
results are comparable to those reported in S3.3 for α = 1, the main difference being that
with weakly pervasive units the probability of correctly determining the true pervasive units is
lower. Additionally, all σ2 thresholding versions suffer from performance losses if N is too large
relative to T . This is to be expected since the fraction of cross section units that are unaffected
by pervasive units increases in N . Finally, Table S3.6 reports the empirical frequency of false
discoveries in the case of weakly pervasive units. Once again the results are similar to those
obtained for α = 1.
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Table S3.1: Empirical frequency of correctly identifying the absence of a pervasive unit

σ2 thresholding S−σ2

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 96.1 93.5 93.6 92.6 50 96.1 93.5 93.6 92.6
100 99.0 98.1 96.3 96.6 100 99.0 98.1 96.3 96.6
200 99.8 99.6 99.5 98.9 200 99.8 99.6 99.5 98.9
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 60.9 47.8 41.5 40.4 50 60.9 47.8 41.5 40.4
100 89.8 80.8 71.4 68.9 100 89.8 80.8 71.4 68.9
200 99.3 98.6 97.6 97.0 200 99.3 98.6 97.6 97.0
500 100 100 100 99.9 500 100 100 100 99.9

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 35.1 24.0 17.1 15.8 50 35.1 24.0 17.1 15.8
100 77.3 60.4 43.9 39.7 100 77.3 60.4 43.9 39.7
200 98.3 95.7 90.9 89.3 200 98.3 95.7 90.9 89.3
500 100 100 100 99.8 500 100 100 100 99.8

SMT−σ2 SMT−σ2, alternative scaling
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 100 100 100 100 50 100 100 100 100

100 100 100 100 100 100 100 100 100 100
200 100 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 88.4 86.4 82.7 80.3 50 88.4 86.4 82.7 80.3
100 94.1 92.3 90.7 88.9 100 94.1 92.3 90.7 88.9
200 99.8 99.2 99.4 99.2 200 99.8 99.2 99.4 99.2
500 100 100 100 100 500 100 100 100 100

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 61.6 55.9 47.7 44.3 50 61.6 55.9 47.7 44.3
100 84.0 74.5 64.2 60.9 100 84.0 74.5 64.2 60.9
200 98.6 97.7 94.2 94.1 200 98.6 97.7 94.2 94.1
500 100 100 100 99.9 500 100 100 100 99.9

Notes: σ2 thresholding is implemented using Algorithm 1 in the main article, with
pmax = m0 + k0 + 1, where m0 is the true number of pervasive units (if any) and
k0 is the number of external factors. S−σ2 and SMT−σ2 refer to Sequential σ2

thresholding and Sequential-MT σ2 thresholding, as implemented using Algorithms
2 and 3 in the main article, respectively. Threshold in the σ2 thresholding step of all
three algorithms is given by σ̂2

iT ≤ 2η̂2iNN
−1 log(T ). The threshold chosen for N > T

in the alternative version of SMT−σ2 is given by σ̂2
iT ≤ 2σ̂2

uiT
−1 log(T ). See Section

A.3 for further details.
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Table S3.2: Average number of non-pervasive units falsely selected as pervasive (m0 = 0)

σ2 thresholding S−σ2

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 0 0.1 0.1 0.1 50 0 0.1 0.1 0.1
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 0.4 0.6 0.7 0.7 50 0.5 0.7 0.8 0.8
100 0.1 0.2 0.3 0.3 100 0.1 0.2 0.3 0.4
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 0.9 1.1 1.4 1.4 50 0.9 1.2 1.5 1.5
100 0.2 0.5 0.7 0.8 100 0.3 0.5 0.8 0.9
200 0 0 0.1 0.1 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0

SMT−σ2 SMT−σ2, alternative scaling
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0 0 0 0

100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 0.1 0.2 0.2 0.2 50 0.1 0.2 0.2 0.2
100 0.1 0.1 0.1 0.1 100 0.1 0.1 0.1 0.1
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 0.4 0.5 0.6 0.7 50 0.4 0.5 0.6 0.7
100 0.2 0.3 0.4 0.4 100 0.2 0.3 0.4 0.4
200 0 0 0.1 0.1 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S3.1.
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S4 Maximum difference and maximum ratio threshold-

ing

The idea of considering the maximum difference or the maximum ratio between two ordered
statistics, has been recently suggested by Ahn and Horenstein (2013) and used by Brownlees and
Mesters (2018) in the context of detecting pervasive units, can also be applied to σ2 thresholding.
Denote by σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(N)T the ordered estimated error variances in ascending order for a

dataset withN cross section units and T time periods. Then the following two simple algorithms
can be considered:

Algorithm 6 (Max σ2−difference algorithm)

1. Conduct σ2 thresholding using pmax estimated factors. If the estimated number of pervasive
units, denoted by m̃, is zero, stop and conclude that there is no pervasive unit. Otherwise,
proceed with step 2.

2. Let the estimated number of pervasive units be given by

m̂ = arg max
j=1,2,...,pmax

(
σ̂2

(j+1)T − σ̂2
(j)T

)
,

and the estimated identities by the indices of the units whose estimated error variances
are σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(m̂)T .

Algorithm 7 (Max σ2−ratio algorithm)

1. Conduct σ2 thresholding using pmax estimated factors. If m̃ = 0, stop and conclude that
there is no pervasive unit. Otherwise, proceed to step 2.

2. Let the estimated number of pervasive units be given by

m̂ = arg max
j=1,...,pmax

(
σ̂2

(j+1)T

σ̂2
(j)T

)
,

and the estimated identities by the indices of the units whose estimated error variances
are σ̂2

(1)T , σ̂
2
(2)T , . . . , σ̂

2
(m̂)T .

In Table S4.1 we report the performance of the two approaches described above using the
Monte Carlo set up described in Section 6 of the paper. The case m = 0 is left out since the
probability of correctly detecting the absence of pervasive units is entirely determined by the
initial σ2 thresholding step of max difference and max ratio thresholding methods. Results for
models with at least one pervasive unit show that the two algorithms, based on either the max-
imum difference or the maximum ratio, perform quite similarly to the SMT−σ2 thresholding.
However, the former two methods exhibit inferior performance in samples where N is small.
This comparative disadvantage is compensated by a superior performance in cases where there
are both external common factors and more than one pervasive units. However, empirical evi-
dence for the presence of at least one pervasive unit in the existing applied literature is rather
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limited.21 Furthermore, the relative advantage of max difference or max ratio thresholding
disappears when weakly pervasive units are considered. As reported in Table S4.3, SMT−σ2

thresholding has a performance comparable to that of the two new algorithms considered here,
even when N is large and the number of pervasive units is larger than 1.

Tables S4.2 and S4.4 report the average numbers of falsely selected pervasive units, and
show that the max difference and max ratio thresholding procedures perform reasonably well.
But as compared to SMT−σ2 thresholding, the max thresholding approaches tend to show a
higher proportion of false discoveries, and overall we are led to favor SMT−σ2 thresholding
over the max difference and the max ratio thresholding.

21see e.g. Pesaran and Yang (2019) or Dungey and Volkov (2018) who find that the degree of dominance of
the most influential unit in their datasets is quite far from the value of 1 that would indicate a pervasive unit
in the sense of a factor common to all cross-section units.
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Table S4.1: Empirical frequency of correctly identifying only the true strongly pervasive units
(m > 0, α = 1)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 97.7 99.9 100 100 50 89.9 97.4 99.1 99.4 50 94.6 99.2 99.8 99.8

100 100 100 100 100 100 97.9 99.5 100 100 100 99.7 100 100 100
200 100 100 100 100 200 99.5 100 100 100 200 100 100 100 100
500 100 100 100 100 500 100 100 100 100 500 100 100 100 100

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 58.9 80.6 82.9 82.3 50 45.3 74.1 88.1 91.7 50 49.9 78.9 90.9 93.7
100 68.1 88.4 93.3 93.0 100 62.6 90.4 99.2 99.1 100 66.4 92.4 99.4 99.3
200 79.1 97.8 99.6 99.5 200 76.3 98.1 100 100 200 78.6 98.2 100 100
500 82.1 99.9 100 100 500 81.8 99.9 100 100 500 82.1 99.9 100 100

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 52.5 61.7 61.1 55.5 50 45.9 71.1 85.4 87.7 50 51.7 75.7 89.7 90.4
100 65.3 75.9 74.7 74.2 100 62.4 89.8 98.8 99.2 100 67.0 91.5 99.1 99.6
200 72.7 95.6 97.1 96.0 200 71.7 97.0 100 100 200 73.3 97.3 100 100
500 77.1 99.4 100 100 500 76.3 99.4 100 100 500 77.1 99.4 100 100

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 55.8 85.0 96.0 97.7 50 37.8 67.3 86.6 89.1 50 36.6 66.2 86.5 88.6

100 58.9 87.3 98.2 98.6 100 49.5 83.9 97.7 98.2 100 48.4 84.9 97.8 98.5
200 59.0 88.8 98.4 98.9 200 57.1 88.5 98.4 98.9 200 58.0 88.8 98.4 98.9
500 60.9 94.8 100 100 500 60.5 94.7 100 100 500 60.9 94.8 100 100

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 36.2 67.3 79.1 79.5 50 30.7 56.1 72.2 76.5 50 28.2 52.6 67.3 70.3
100 41.7 78.5 91.5 92.4 100 49.1 84.9 97.4 98.2 100 44.3 77.6 91.6 92.7
200 43.5 87.6 98.3 99.3 200 64.4 97.0 99.9 100 200 56.8 91.1 99.3 99.5
500 46.0 96.2 100 100 500 75.1 98.3 100 100 500 65.4 97.6 100 100

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 38.9 61.3 63.0 60.5 50 29.4 53.2 73.0 75.8 50 28.7 50.1 65.5 69.8
100 48.4 73.3 79.6 79.6 100 54.2 87.5 97.8 98.5 100 49.8 78.3 91.9 93.0
200 47.5 86.9 96.8 97.1 200 71.0 98.5 100 99.9 200 61.4 92.8 99.2 99.7
500 41.0 94.6 99.9 100 500 77.6 99.3 100 100 500 66.0 97.8 100 100

Notes: SMT−σ2 refers to SMT−σ2 thresholding, implemented with pmax = m0 +k0 +1 as described in Algorithm 5. max σ2−diff
and max σ2−ratio denote detection of pervasive units via algorithms 6 and 7, conducted with pmax = m0 + k0 + 1.
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Table S4.2: Average number of non-pervasive units falsely selected as pervasive units (m0 > 0
and α = 1)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.1 0 0 0 50 0.1 0 0 0

100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.2 0.1 0.2 0.2 50 0.5 0.2 0.1 0.1 50 0.4 0.2 0.1 0
100 0.1 0.1 0.1 0.1 100 0.1 0 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.4 0.3 0.4 0.5 50 0.7 0.4 0.2 0.1 50 0.6 0.3 0.1 0.1
100 0.1 0.2 0.3 0.3 100 0.2 0.1 0 0 100 0.2 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.2 0.1 0.1 0.1 50 0.2 0.1 0 0

100 0 0 0 0 100 0.1 0 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.2 0.1 0.1 0.1 50 0.4 0.2 0.1 0.1 50 0.3 0.1 0.1 0
100 0 0 0 0 100 0.2 0.1 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.3 0.3 0.3 0.4 50 0.6 0.3 0.1 0.1 50 0.4 0.2 0.1 0.1
100 0.1 0.1 0.2 0.2 100 0.2 0.1 0 0 100 0.1 0 0 0
200 0 0 0 0 200 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S4.1.
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Table S4.3: Empirical frequency of correctly identifying only the true weakly pervasive (influ-
ential) units (m > 0, α = 0.8)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 51.2 80.6 95.4 97.5 50 47.4 74.6 88.0 89.9 50 50.4 77.8 90.8 92.6

100 87.2 98.9 100 100 100 75.6 95.0 99.2 99.5 100 79.3 97.3 99.8 99.9
200 97.5 100 100 100 200 91.6 99.4 100 100 200 94.1 99.9 100 100
500 97.7 100 100 100 500 96.3 100 100 100 500 97.5 100 100 100

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 37.4 65.2 79.1 78.9 50 26.3 49.6 73.1 77.4 50 28.9 53.5 76.9 81.0
100 65.1 90.5 93.7 93.5 100 48.9 84.7 98.0 98.1 100 52.8 88.2 99.3 99.1
200 84.6 99.4 99.6 99.5 200 72.0 98.1 100 100 200 76.0 99.4 100 100
500 82.7 99.9 100 100 500 80.2 99.7 100 100 500 81.9 99.9 100 100

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 37.7 53.3 58.2 54.5 50 28.2 50 70.9 74.1 50 32.0 54.3 75.5 78.6
100 64.2 79.7 75.3 74.4 100 50.3 83.1 97.6 98.2 100 54.5 87.9 98.6 99.4
200 82.7 98.2 97.1 96.0 200 71.3 98.0 99.8 100 200 75.8 99.2 100 100
500 80.9 100 100 100 500 77.5 99.9 100 100 500 79.6 100 100 100

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 6.6 31.6 63.7 67.3 50 14.1 27.0 39.2 41.5 50 13.4 25.7 38.6 40.2

100 13.7 57.4 89.2 92.6 100 13.0 36.8 62.4 68.1 100 12.6 35.9 60.4 66.2
200 7.7 48.2 88.1 92.0 200 5.4 36.0 78.7 85.1 200 4.8 34.8 77.0 84.0
500 0.9 23.0 71.0 79.3 500 0.6 20.1 70.6 79.1 500 0.5 19.9 70.6 79.2

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 8.9 32.0 60.6 63.7 50 9.6 21.6 32.3 34.1 50 9.5 20.7 31.6 33.1
100 16.5 61.3 88.8 91.5 100 13.6 37.8 60.6 65.3 100 13.3 36.4 58.7 63.9
200 11.4 61.8 94.7 97.1 200 9.8 44.1 82.5 87.7 200 8.9 42.7 80.7 86.2
500 1.8 32.3 84.6 91.7 500 0.9 28.4 83.7 91.5 500 0.9 27.9 83.7 91.7

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 13.3 33.5 50.1 50.4 50 9.7 18.7 32.9 36.7 50 9.4 18.8 32.2 36.3
100 26.6 65.3 79.3 80.2 100 16.6 39.2 67.5 72.8 100 15.3 38.3 65.3 70.9
200 17.6 75.7 96.1 96.6 200 13.1 51.2 88.0 91.8 200 12.5 50.4 86.4 90
500 2.4 36.5 89.2 93.8 500 1.6 33.0 88.5 93.6 500 1.7 31.9 88.4 93.6

Notes: See the notes to Table S4.1.
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Table S4.4: Average number of non-pervasive units falsely selected as pervasive units (m0 > 0
and α = 0.8)

Part A: m0 = 1
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50 0.4 0.2 0.1 0.1 50 0.4 0.2 0.1 0.1

100 0 0 0 0 100 0.2 0.1 0 0 100 0.2 0 0 0
200 0 0 0 0 200 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.2 0.2 0.2 0.2 50 0.9 0.7 0.3 0.3 50 0.8 0.6 0.3 0.2
100 0.1 0.1 0.1 0.1 100 0.5 0.2 0 0 100 0.4 0.1 0 0
200 0 0 0 0 200 0.2 0 0 0 200 0.1 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.5 0.4 0.5 0.5 50 1.1 0.8 0.4 0.4 50 1.0 0.7 0.4 0.3
100 0.2 0.2 0.3 0.3 100 0.6 0.2 0 0 100 0.5 0.2 0 0
200 0 0 0 0 200 0.2 0 0 0 200 0.2 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Part B: m0 = 2
SMT−σ2 max σ2−diff max σ2−ratio
k0 = 0 k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0.1 0.1 0 0 50 0.5 0.4 0.3 0.3 50 0.5 0.4 0.2 0.2

100 0 0 0 0 100 0.3 0.2 0.1 0.1 100 0.2 0.2 0.1 0.1
200 0 0 0 0 200 0.1 0.1 0 0 200 0.1 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 1 k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.2 0.2 0.2 0.2 50 0.9 0.7 0.5 0.5 50 0.8 0.6 0.4 0.4
100 0.2 0.1 0.1 0.1 100 0.6 0.4 0.2 0.2 100 0.5 0.4 0.2 0.2
200 0 0 0 0 200 0.2 0.2 0.1 0 200 0.2 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

k0 = 2 k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250

50 0.5 0.4 0.4 0.5 50 1.2 0.9 0.6 0.6 50 1.0 0.7 0.5 0.5
100 0.3 0.2 0.2 0.2 100 0.8 0.5 0.2 0.2 100 0.7 0.4 0.1 0.1
200 0.1 0 0 0 200 0.3 0.3 0.1 0 200 0.2 0.2 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S4.1.
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S5 Simulation results for unmodified BM

In the paper we have used a modified version of BM’s detection method discussed in Section
6 of Brownlees and Mesters (2018), whereby only the N/2 most connected cross-section units
are considered when determining the number of pervasive units. This section complements
the simulations in Section 6 of the paper and report results for BM without this modification
(henceforth unmodified BM ). When implementing this procedure, the number of pervasive units
is determined from all N cross section units in the dataset. All other details of the simulation
exercise are as described in Section 6 of the paper.

Results on the probability of correctly determining the absence of pervasive units from the
data are left out since BM selects at least one unit as pervasive by construction. The results for
experiments with m0 > 0 are summarized in Table S5.1. As can be seen the average number
of units detected as pervasive turns out to be much larger as compared to the modified BM.
In fact, more than half of the cross section units in the sample are, on average, found to be
pervasive. In some cases, standardization of the data leads to a considerable decrease in the
number of detected units. However, the set of cross section units falsely identified as pervasive
continues to be sizeable.

In cases where the data are driven by at least one pervasive unit, unmodified BM method
exhibits a reasonable performance if T −N is large enough, and if the data is not standardized
(see Table S5.2). By contrast, standardizing individual-specific time series has severe conse-
quences for the probability of correctly detecting the true pervasive units, especially in the
presence of external factors. As can be seen from Table S5.4, the same results obtain if the true
pervasive units are weakly pervasive. The average number of units falsely detected as pervasive
can be substantial. See Table S5.3 and Table S5.5).
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Table S5.1: Average number of non-pervasive units falsely selected as pervasive (m0 = 0)

unmodifed BM unmodified BM (standardized)
k0 = 0 k0 = 0

N \T 60 110 210 250 N \T 60 110 210 250
50 29.7 31.2 36.4 36.9 50 29.3 23.2 26.0 29.5

100 n/a 61.7 69.0 71.9 100 n/a 60.7 46.3 49.0
200 n/a n/a 126.2 123.4 200 n/a n/a 126.0 93.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 28.7 31.6 37.1 37.4 50 26.0 17.2 14.3 14.6
100 n/a 60.6 67.9 73.1 100 n/a 54.8 29.8 26.2
200 n/a n/a 123.1 128.4 200 n/a n/a 111.1 78.5
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 30.5 31.4 36.1 37.6 50 25.8 17.8 13.9 12.6
100 n/a 61.6 69.3 72.1 100 n/a 52.2 25.4 24.8
200 n/a n/a 126.8 127.2 200 n/a n/a 105.5 72.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: unmodified BM refers to the detection method of Brownlees and Mesters (2018) as intro-
duced formally in Section 3 of their paper. unmodified BM (standardized) stands for application of
unmodified BM to data that have been recentered and rescaled so that each cross-section specific
time-series has an average of zero and a variance of one. BM methods are not applicable (n/a) if
T < N .
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Table S5.2: Empirical frequency of correctly identifying only the true strongly pervasive units
(m0 > 0, and α = 1)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 48.4 98.3 100.0 100.0 50 47.0 98.2 99.7 99.9
100 n/a 73.6 100.0 100.0 100 n/a 69.3 100.0 100.0
200 n/a n/a 89.6 100.0 200 n/a n/a 87.4 100.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 42.1 96.7 99.9 99.9 50 25.6 74.7 90.7 93.1
100 n/a 67.3 100.0 100.0 100 n/a 47.6 99.0 99.8
200 n/a n/a 85.0 100.0 200 n/a n/a 69.4 99.9
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 36.7 95.4 99.6 99.8 50 12.8 45.1 62.7 65.4
100 n/a 63.6 100 100 100 n/a 29.6 94.4 96.0
200 n/a n/a 83.7 100 200 n/a n/a 53.3 98.3
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 23.6 91.7 99.4 99.7 50 5.4 40.8 68.7 72.4
100 n/a 46.0 100.0 100.0 100 n/a 16.7 94.9 98.4
200 n/a n/a 66.5 100.0 200 n/a n/a 38.1 97.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 17.1 85.1 97.9 98.5 50 1.4 7.5 16.5 17.7
100 n/a 36.9 99.9 100.0 100 n/a 5.6 58.5 63.1
200 n/a n/a 55.7 99.9 200 n/a n/a 14.8 75.6
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 15.55 79.5 96.3 97.35 50 0.2 1.0 2.2 1.6
100 n/a 33.1 99.95 99.85 100 n/a 1.5 22.8 28.7
200 n/a n/a 50.35 99.65 200 n/a n/a 5.8 46.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.3: Average number of non-pervasive units falsely selected as pervasive (m0 > 0, and
α = 1)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 14.7 0.3 0.0 0.0 50 12.5 0.0 0.0 0.0
100 n/a 16.0 0.0 0.0 100 n/a 15.4 0.0 0.0
200 n/a n/a 12.1 0.0 200 n/a n/a 12.3 0.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 17.6 0.6 0.0 0.0 50 19.1 2.9 0.5 0.3
100 n/a 19.6 0.0 0.0 100 n/a 26.0 0.0 0.0
200 n/a n/a 19.6 0.0 200 n/a n/a 30.0 0.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 18.5 1.1 0.1 0.1 50 23.7 10.0 5.3 4.7
100 n/a 21.6 0.0 0.0 100 n/a 37.6 0.7 0.3
200 n/a n/a 19.4 0.0 200 n/a n/a 49.1 0.4
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 11.7 0.4 0.0 0.0 50 16.9 2.2 0.4 0.5
100 n/a 8.2 0.0 0.0 100 n/a 19.6 0.0 0.0
200 n/a n/a 6.2 0.0 200 n/a n/a 18.2 0.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 13.0 1.1 0.1 0.0 50 21.4 10.0 6.8 6.3
100 n/a 13.7 0.0 0.0 100 n/a 33.7 1.0 0.7
200 n/a n/a 10.0 0.0 200 n/a n/a 42.5 0.6
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 13.8 1.1 0.2 0.2 50 26.0 19.2 17.8 18.2
100 n/a 13.7 0.0 0.0 100 n/a 44.0 8.3 6.3
200 n/a n/a 12.7 0.0 200 n/a n/a 67.3 4.9
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.4: Empirical frequency of correctly identifying only the true weakly pervasive (influ-
ential) units (m0 > 0, and α = 1)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 15.8 63.2 87.6 90.4 50 21.9 69.3 85.3 87.8
100 n/a 30.1 99.0 100.0 100 n/a 37.8 98.4 99.4
200 n/a n/a 44.8 99.3 200 n/a n/a 54.9 99.0
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 1, k = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 13.3 59.8 87.1 89.3 50 9.7 31.1 45.4 45.1
100 n/a 27.5 98.8 99.6 100 n/a 21.7 82.0 84.9
200 n/a n/a 44.3 98.7 200 n/a n/a 37.5 89.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 1, k = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 13.3 59.0 84.6 88.7 50 5.9 13.5 15.9 17.4
100 n/a 25.6 98.8 99.5 100 n/a 12.9 52.8 59.7
200 n/a n/a 44.6 98.6 200 n/a n/a 24.3 75.3
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 4.6 43.8 74.9 79.4 50 1.4 4.9 9.0 11.5
100 n/a 10.8 94.3 98.0 100 n/a 3.1 43.7 50.9
200 n/a n/a 20.7 94.2 200 n/a n/a 10.3 64.5
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 2, k = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 4.2 41.6 70.2 76.5 50 0.2 0.6 0.7 0.7
100 n/a 10.2 94.3 96.4 100 n/a 1.3 11.9 11.8
200 n/a n/a 17.1 92.2 200 n/a n/a 3.3 29.3
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

m0 = 2, k = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 3.2 39.1 68.8 73.5 50 0.0 0.1 0.0 0.0
100 n/a 9.1 92.1 95.9 100 n/a 0.4 1.5 1.4
200 n/a n/a 17.0 91.2 200 n/a n/a 1.4 9.4
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.5: Average number of non-pervasive units falsely selected as pervasive (m0 > 0, and
α = 0.8)

Part A: m0 = 1
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 25.1 10.1 4.4 3.3 50 19.2 2.7 0.3 0.2
100 n/a 43.5 0.3 0.0 100 n/a 32.7 0.0 0.0
200 n/a n/a 72.9 0.6 200 n/a n/a 46.5 0.1
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 26.8 12.0 4.3 3.5 50 21.2 7.3 3.3 2.8
100 n/a 44.1 0.4 0.3 100 n/a 38.7 1.1 0.4
200 n/a n/a 72.6 1.3 200 n/a n/a 59.4 2.2
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 25.5 12.2 5.2 3.9 50 23.1 11.7 8.8 8.1
100 n/a 46.8 0.7 0.3 100 n/a 43.6 7.0 4.4
200 n/a n/a 69.4 1.5 200 n/a n/a 72.1 8.6
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Part B: m0 = 2
unmodifed BM unmodified BM (standardized)

k0 = 0 k0 = 0
N \T 60 110 210 250 N \T 60 110 210 250

50 22.5 7.1 2.7 2.2 50 18.6 5.2 3.3 3.2
100 n/a 33.7 0.2 0.1 100 n/a 29.8 0.9 0.6
200 n/a n/a 48.2 0.4 200 n/a n/a 43.0 0.9
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 1 k0 = 1
N \T 60 110 210 250 N \T 60 110 210 250

50 22.1 8.5 3.3 2.5 50 20.2 9.5 6.5 6.6
100 n/a 35.4 0.4 0.1 100 n/a 35.5 4.6 3.5
200 n/a n/a 52.3 0.7 200 n/a n/a 56.8 5.8
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

k0 = 2 k0 = 2
N \T 60 110 210 250 N \T 60 110 210 250

50 23.2 7.9 3.5 2.9 50 21.6 12.8 10.4 10.0
100 n/a 36.9 0.6 0.1 100 n/a 41.3 12.6 10.2
200 n/a n/a 56.3 0.7 200 n/a n/a 75.1 18.5
500 n/a n/a n/a n/a 500 n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S6.1: Pervasive units in sector-wise industrial production in the U.S.

Full sample (1972m1 - 2007m12)
Approach: unmodified BM unmodified BM (standardized)
Number of perva-
sive units:

137 2

Identities: all except Automobiles and Light Duty Motor Vehicles
Iron Ore Mining Motor Vehicle Parts

Sub-sample A (1972m1 - 1983m12)
Approach: unmodified BM unmodified BM (standardized)
Number of perva-
sive units:

135 2

Identities: all except Motor Vehicle Parts
Iron Ore Mining

Heavy Duty Trucks
Motor Homes

Sub-sample B (1984m1 - 2007m12)
Approach: unmodified BM unmodified BM (standardized)
Number of perva-
sive units:

137 5

Identities: all except Motor Vehicle Parts
Audio and Video Equipment Automobiles and Light Duty Motor Vehicles

Aluminum Extruded Products
Miscellaneous Aluminum Materials

Motor Vehicle Bodies
Notes: Data taken from Foerster, Sarte, and Watson (2011).

S6 Empirical results for unmodified BM

In this section we provide results obtained if the unmodified BM procedure is used in our em-
pirical applications. The data sources and transformations are as described in Section 7 of the
paper. Again, unmodified BM method is applied to the data with and without standardization.
The results are summarized in Tables S6.1-S6.3, and suggest that unmodified BM grossly over-
estimates the number of pervasive units in almost all applications, regularly detecting all but
one or two cross section units as pervasive. The use of standardized data leads in all but one
case to a lower detected number of pervasive. However, while the reduction can be quite sub-
stantial, in a number of applications the number of pervasive units detected using standardized
data can be quite large (5 or more in some the applications).
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Table S6.2: Pervasive countries in terms of quarterly macroeconomic indicators

Variable: real GDP growth real equity price growth
Approach: unmodified BM unmodified BM (std) unmodified BM unmodified BM (std)

Number of perva-
sive units:

2 11 25 1

Identities: France * all except Netherlands
Spain Argentina

*: Italy; Spain; France; USA; Germany; Canada; UK; Malaysia; Belgium; Finland; South Africa.

Notes: Data taken from GVAR database (Mohaddes and Raissi, 2018).

Table S6.3: Estimated U.S. states with pervasive housing market

Approach: unmodified BM unmodified BM (standardized)
Number of perva-
sive units:

47 6

Identities: all except Connecticut Maryland
Nevada New Hampshire Virginia

Massachusetts Rhode Island
Notes: Data taken from Yang (2018) and Freddie Mac House Price Indexes.
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