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Abstract

The importance of units with pervasive impacts on a large number of other units
in a network has become increasingly recognized in the literature. In this paper we
propose a new method to detect such pervasive units by basing our analysis on unit-
specific residual error variances in the context of a standard factor model, subject to
suitable adjustments due to multiple testing. Our proposed method allows us to estimate
and identify pervasive units having neither a priori knowledge of the interconnections
amongst cross-section units nor a short list of candidate units. It is applicable even if the
cross section dimension exceeds the time dimension, and most importantly it could end up
with none of the units selected as pervasive when this is in fact the case. The sequential
multiple testing procedure proposed exhibits satisfactory small-sample performance in
Monte Carlo simulations and compares well relative to existing approaches. We apply
the proposed detection method to sectoral indices of US industrial production, US house
price changes by states, and the rates of change of real GDP and real equity prices across
the world’s largest economies.
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1 Introduction

Detecting the presence of economic agents, whose behavior influences a large number of peers,
has become a relevant issue in several areas of economics. For example, in banking and finance
it is of interest to consider formal ways of identifying whether particular financial institutions
present systemic risks. At times of economic and financial crises it is often of interest to know if
a certain corporation, particularly among financial institutions, is so large and interconnected
that its failure could lead to cascade effects with important consequences for the economy as
a whole. Such units are often referred to as ‘too big to fail’ and their existence is debated in
the press and in public policy forums, although empirical evidence in support of such claims is
often lacking. In cases where information on interconnections across units exist, it is possible
to use a network approach to detect the most influential unit in the network and examine its
degree of dominance. An important example is input-output data used to analyze the role
that individual production units, such as industrial sectors, play in propagating shocks across
the economy. A major recent contribution in this area is by Acemoglu, Carvalho, Ozdaglar,
and Tahbaz-Salehi (2012) who suggest using the shape parameter of a power law assumed
for the degree sequence of a network to measure the extent to which variations in aggregate
volatility are affected by shocks to individual units within the network. Further developments
are provided by Acemoglu, Akcigit, and Kerr (2016) and Acemoglu, Autor, Dorn, Hanson, and
Price (2016). In related work, Pesaran and Yang (2019) propose extremum estimators based on
outdegrees of a network to detect and identify influential units in the network and to estimate
their degrees of pervasiveness.

In cases where information on network connections is not available, it is still possible to
identify individual cross-sections in panel dataset whose behavior has an impact on that of all
other cross-sections, if there is a sufficient number of time series observations (7") on all cross-
section units (V) in the sample. In this paper we suppose that such time series observations
are available and address the problem of jointly determining the number as well as the identity
of cross-section units in a panel dataset that are influential or pervasive, in the sense that they
influence almost all other cross-section units. From the perspective of economic networks, the
central hub in a star network provides a simple example of a pervasive unit. As noted above,
the concept of pervasive units is closely related to the notion of ‘too big to fail’ often used in
the context of financial and production networks. However, it is important to bear in mind
that the two concepts are not identical. For example, a unit that is too big to fail may become
influential mainly in crisis periods, implying a nonlinear behavior that our linear model may
not be best equipped to handle.

Our approach shares some features with previous contributions on the same subject (see e.g.
Bai and Ng, 2006; Parker and Sul, 2016; Brownlees and Mesters, 2018) but significantly improves
on existing research in a number of respects. First, we allow for the possibility that the data
under consideration does not include any pervasive unit in the first place. This is a leading case
of interest and, in fact, some of our empirical work confirms its practical importance. Secondly,
we do not require a prior: information on a potential list of pervasive units or observations on
network linkages. This is a key advantage relative to contributions in the production network
literature which relies on the availability of input-output tables. Third, our detection procedure
can determine pervasive units from a large number of potential candidates, even in the presence
of external common factors that could potentially influence all units (including the pervasive
units). Finally, our procedure applies even if N > T, which is an important consideration in



practice where in many applications of interest the number of time series observations is limited
either because of unavailability of data or due to structural breaks.

Before proceeding to propose an operational procedure to identify pervasive units, we need
to provide a clear mathematical definition of what we mean by pervasive units, using both
intuitive and mathematical arguments. As a result, we consider intuitive properties that a
pervasive unit should have. As we wish to have a simple structure we choose not to focus on
dynamic models that would potentially allow consideration of various concepts of causation.
Further, such concepts have clear conceptual limitations. Accordingly, using a standard multi-
factor panel data model, we regard a unit as pervasive if it affects a large proportion of other
units in the panel. In other words, any shock that impacts a pervasive unit has to impact a
large proportion of other units. In contrast, for non-pervasive units there can be shocks that
are idiosyncratic and do not affect many other units. Although we do not allow for dynamics,
our model can be extended to allow for shocks to be serially correlated.

A major implication of the existence of pervasive units, as defined above, is that the data can
be represented by a factor model where variation in the pervasive units is perfectly explained
by the true factors. This view on pervasive units reflects the fact that an influential unit can
be viewed as a common factor for all other units in the panel. Consequently, factor estimates
obtained from the dataset will have close to perfect explanatory power for true pervasive units.
Using this result, we consider the residual variance from regressions of individual units on the
factor estimates as a metric that quantifies the explanatory ability of the estimated factors.
Based on ideas from multiple testing we then construct thresholds that determine whether the
residual variance estimated for a given unit is sufficiently small to identify that unit as pervasive.
We find that thresholding residual variances across the units provides a powerful approach with
a number of desirable characteristics and good small sample performance.

A further defining characteristic of our work is to consider refinements that again make
use of multiple testing to allow for the possibility that identified pervasive units may not be
fully pervasive - that is they may only affect a subset of cross-sectional units. This further
distinguishes our work from existing methods which either do not pay much attention to such
weak cross-sectional dependence structures or are unclear about the motivation and nature of
these structures. The use of multiple testing focuses on the possibility that some units selected
as pervasive might only affect a majority of the units in the panel rather than being fully
pervasive with non-zero effects on all units. We feel that local to zero representations of factor
loadings, which are sometimes used in the literature, where the size of the loadings depend on
the sample size and tend to zero as this size rises, are less persuasive as a model for economic
interdependence than the weak dependence formulation that we consider in this paper.

Monte Carlo simulations suggest that our refined thresholding method performs very well
in finite-sample, and most importantly, it reliably detects the absence of pervasive units from a
dataset with many potential candidates. Furthermore, if influential cross section units are part
of the model specification, our detection methodology succeeds in jointly detecting their total
number and their identities. The proposed method also works well even if N is much larger
than 7', and unlike other methods proposed in the literature, its false discovery rate is very low
and tends to zero as N and T — oo.

The proposed detection procedure is applied to sectoral indices of U.S. industrial production
(already investigated in the literature), as well as to the rates of change of real GDP and real
equity prices across the world’s largest economies over the period 1979Q2-2016Q4. Unlike
other detection methods proposed in the literature, we do not find convincing evidence that



there are pervasive sectors within the U.S. industrial production, or that there exist pervasive
economies or equity markets in the global system, once we adequately allow for the presence
of common factors. Finally, we apply the new method to real U.S. house price changes across
the 48 mainland states, and find evidence that New York is pervasive, in contrast to the other
methods that select states such as New Hampshire, Nevada, North Carolina, Maryland and
Virginia (just to mention a few) and not New York as pervasive.

The paper is structured as follows. Section 2 presents a review of the existing literature.
Section 3 provides the main setup of our approach and details our theoretical results. Further
refinements are discussed in Section 5. Sections 6 and 7 present simulation and empirical ev-
idence on the relative performance of our method compared to existing ones. Formal proofs
and additional simulation results are relegated to Appendix A and an online supplement, re-
spectively.

Notation: Generic positive finite constants are denoted by C' when large, and ¢ when small.
They can take different values at different instances. —? denotes convergence in probability as
N, T — 00. Amax (A) and Apin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ||A|| and ||A|; denote the spectral
and Frobenius norm of matrix A. If {f,} ~, is any real sequence and {g,} -, is a sequences
of positive real numbers, then f, = O(gy,), if there exists C' such that |f,| /g, < C for all n.
fo=0(gn) if fu)gn — 0asn — oco. If {f,}.2, and {g,} -, are both positive sequences of real
numbers, then f, = © (g,) if there exists ng > 1 and positive finite constants Cy and Cy, such
that inf,>n, (fn/gn) > Co, and sup,,>,,, (fn/gn) < Ci.

2 Related literature

Asset pricing models have motivated the earliest approaches aimed at determining whether a
given set of observed time series coincides with one of the estimated common factors (principal
components) from a large panel dataset. Bai and Ng (2006) regress each observed candidate
series onto the estimated factors and propose statistics to test the equality between the model
fit from the aforementioned regression and the observed values of a list of (assumed) potential
influential variables. The framework considered by these authors is one where economic theory
reduces the number of potential influential variables to a small, fixed number of economic
indicators that are not part of the large dataset at hand. Consequently, using their framework
to identify pervasive units in large datasets without any means of reducing the number of
candidates is problematic. This pitfall was recognized by Parker and Sul (2016) who provide an
alternative approach to that suggested by Bai and Ng (2006) and consider the identification of
pervasive units in a large dataset as a special case.! Parker and Sul focus on the idiosyncratic
components of the estimated factor model and identify an observed series as a pervasive unit
if it can replace at least one of the estimated factors in the factor model without introducing
common factors in the idiosyncratic components.? In order to address multiple testing concerns,
a rule of thumb is suggested to restrict the number of potential pervasive units. However, this
only mitigates the problem rather than providing a full solution. A more general solution is

n Parker and Sul (2016) a pervasive unit is referred to as the dominant leader.

2Further empirical applications of the Parker and Sul method (in a simpler form) are provided by Gaibulloev,
Sandler, and Sul (2013) and Greenaway-McGrevy, Mark, Sul, and Wu (2018). Soofi-Siavash (2018) also considers
a version of the Parker and Sul method which is applicable to any cross-section unit taken as potentially
pervasive, and provides an application to the industrial sectors in the U.S..



provided by Brownlees and Mesters (2018), who use the sample concentration matrix of all the
units in the data to identify as pervasive units those units whose concentration matrix column
norms are considerably larger than those of the remaining units.®> Under certain regularity
conditions, Brownlees and Mesters show that their procedure consistently partitions the units
into pervasive and non-pervasive by ordering column norms in descending order and choosing
the maximum ratio between two successive, ordered column norms.

While suggesting a consistent detection procedure without needing to estimate the common
factors in the data, Brownlees and Mesters (2018) require the number of time periods to be
larger than the number of cross-section units (7' > N), and assume that there exists at least
one pervasive unit in the data. These two requirements result in considerable restrictions in
empirical practice. First, many datasets, notably those involving aggregate economic indicators,
have a number of cross section units that is approximately as large as the number of time
periods, if not larger. Even if the time dimension of the dataset is sufficiently large, sub-samples
of interest (due to structural breaks) might be too short to allow for a separate investigation.
Second, it is crucial to allow for the possibility that none of the units in the sample at hand is
particularly influential. The relevance of this case is given by recent contributions that track the
effect of sector-specific shocks on aggregate fluctuations. For example, application of a structural
model to data on U.S. industrial production leads Foerster, Sarte, and Watson (2011, p.21) to
conclude that ”[...] linkages alone and uncorrelated sector-specific shocks implies noticeably
less co-movement across sectors than in U.S. data.” Further evidence is given in Pesaran and
Yang (2019) who develop an estimator for the degree of dominance of the most pervasive unit
in a network. Their application on U.S. input-output tables reveals that there is ”[...] some
evidence of sector-specific shock propagation, but [that] such effects do not seem sufficiently
strong and long-lasting |...]” in the sense that the aggregate effect of sectoral shocks vanishes as
the number of sectors in the economy increases. Finally, while the two studies cited above allow
for the absence of pervasive units, they crucially rely on the availability of input-output matrices
as a measure of linkages between cross-sections. Comparable information may not always be
available, thus making it impossible to use the techniques in these studies. By contrast, the
approach proposed in the current paper is applicable to any large dimensional panels without
requiring the presence of a minimum number of pervasive units in the panel.

3 Panel data models with pervasive units

Suppose T time series observations are available on N cross section units denoted by z;,
for: = 1,2,...,N and t = 1,2,...,T. We are interested in determining the number and
identity of pervasive units (if any), in this panel. To define the concept of a pervasive unit,
we propose a mathematical formalization of our intuitive idea that pervasive units are those
for which any shock that impacts them also has to impact a large proportion of other units.
In its most general the idea can be formalized in terms of conditional probability distributions
where conditioning is on general o-fields that represent information sets. Let (2, F, P) be some
probability space that is rich enough for modelling x;;, Let G; € F and G, C F, be some
o-fields and, assuming stationarity for x;;, let F; (x|.) denote the conditional distribution of x;,
which, we assume, exists. Then, a unit is pervasive if for all possible G; C F and G, C F, such

3Brownlees and Mesters (2018) employ the term granular unit to denote a pervasive unit.



that Ep [sup, |F; (z|G1) — F; (z|G2)|] > 0, we have that

&
Nhj{;ﬁ Z Ep [Slip\Fj(ﬂgl)—Fj(x’%”] =6

J=1,j#

for some 0 < ¢ < 0o, where Ep [.] denotes expectation with respect to P. If there exist G; C F
and Gy C F such that Ep [sup, |F; (¢|G1) — F; (x]|Gs)|] > 0, but

N

1
lim N Z Ep {Slip |Fj (|G1) — F} (x‘%)q =0,

N—oo . <
J=1,37#i

the unit is not pervasive. This definition becomes clearer if we specialize to the case of con-
ditional expectations, on which we will focus from now. In that case, a unit is pervasive if
for all possible G; € F and Gy C F, such that Ep[|F (x4|G1) — E (z4|G2)|] > 0, we have
that limy_,e0 % Z;V:Lj# Ep[|E (2jt|G1) — E (24|G2)|] = ¢, for some 0 < ¢ < oco. This basically
states that if there are no shocks that affect x;; but do not affect a non-zero proportion of the
other units then x; is pervasive. Later on we shall see that concepts of weak dominance can
be accommodated by, for example, stating that there is 0 < o < 1, such that a unit is weakly
pervasive if, for all possible G, C F and Gy C F, such that Ep [|E (2|G1) — E (24]G2)|] > 0,
we have that limy_e0 1= Z;V:Lj# Ep[|E (xj|G1) — E (2;1|G2)|] = ¢, for some 0 < ¢ < 00, and
a < 1.

While this definition is primitive and model free it is not that useful for operationalizing a
procedure that detects the number and identity of pervasive units. So we proceed by specifying
that all cross sectional units can be modeled using unobserved common factors. It will then
be obvious that such a setup conforms to the above definition. More formally, we consider the
following data generating process (DGP)

Xat = Aphy + Aygy, (1)
Xpt = BaXat + ngt + uy, (2)
fort =1,2,...,T, where x,; and x;; are m x 1 and n X 1 vectors of observations at time ¢ on

the pervasive and non-pervasive units, respectively. Thus N = m + n. Only the N x 1 vector
x; = (x/,; x,,) is observed to the researcher and the true number of pervasive units m as well
as their identities are unknown. The partitioning of x; into m pervasive units, followed by n
non-pervasive units is made exclusively for expositional purposes and in general there is no a
priori information about the cross-section indexes of potential pervasive cross-sections.

The m pervasive units, z,j:, j = 1,2,...,m affect the non-pervasive units, xy;, @ = m +
1,m+2,....,N via the n x m matrix of loading coefficients B, = (b, ), where n = N —m. For
T4+ to be a pervasive unit we must have

N
Z |ba,ij| - @(n)’ .] = 1727"'am' (3)

1=m+1

In other words, for a unit to be pervasive it must have non-zero effects on almost all other units
in the panel or network. Following Chudik, Pesaran, and Tosetti (2011), we could also consider



units that are not pervasive but still quite influential. Suppose that there exists an ordering
of the non-pervasive units such that unit z, ;; only affects the non-pervasive units, z ;;, whose
index i < [n% |, where a; (0 < a; < 1) is an exponent parameter that measures the degree of
the dominance of z, j; in the panel.* This requirement can be written equivalently as

N
D gl = ©(n%), for j =1,2,...,m, (4)

i=m+1

which is a natural generalization of (3). The unit z,j with o; < 1 can be viewed as a weak
factor, but as argued in Bailey, Kapetanios, and Pesaran (2016) and Bailey, Kapetanios, and
Pesaran (2019), for z, j; to have pervasive effects on other units we need «; to be reasonably
close to unity. Clearly, the values of a; < 1/2 can be ruled out since for such values, 4 ;:
becomes so weak that it loses many of the standard characteristics, associated with factor
variables. In practice we might need to focus on exponents that fall in the range 2/3 < a; <1
before we can be confident that unit z, ;; has non-negligible impacts on other units in the panel
dataset. In terms of the general definition (4), for all elements of x, to be pervasive it is
required that a; = 1 for j = 1,2, ..., m, and pervasive units can be regarded as strong factors.
While our theory focuses on a; = 1, j = 1,2,...,m, it can be extended to a; < 1, using ideas
in the above cited papers. It is also possible to estimate the exponent «; once the unit z, j; is
selected as pervasive/influential. However, such extensions are beyond the scope of the present
paper.

The k x 1 vector g; contains common ”external” factors affecting both pervasive and non-
pervasive units via the m x k and the n x k loading matrix A, and B,, respectively. The
pervasive units can also be viewed as ”internal” factors. Lastly, the m x 1 vector h; as well as
the n x 1 vector u; model stochastic variation that originates in the pervasive and non-pervasive
units, respectively. To simplify the exposition we abstract from deterministic effects such as
intercepts or linear trends and without loss of generality assume that z;; have zero means and
finite variances. Define now the p x 1 vector f; = (h}, g})" = (fit, fat, - - -, for)’ Where p = m+ k.
Using this vector, the pervasive unit model (1)-(2) can be written as a restricted static factor

model, given by
Xat Aa 0
= f, +
()= () ()

= Af, + vy, (5)

where A, = (A, Ay) and A, = (B,A;, B,A, + B,). Additionally, denote by a; the i-th row
of A = (A’,A})". Since a pervasive unit is de facto a common factor, then m < p. It is also
shown in Chudik, Pesaran, and Tosetti (2011), that p must be a fixed integer to ensure that
Var(zy) is bounded in N. Accordingly, we assume that 0 < m < p < Pz, Where pq, is an
upper bound on p.

We shall also make the following assumptions:

Assumption 1

4|a] denotes the integer part of a.
®The magnitude of m relative to k is immaterial as long as both are fixed.



1. £, is a covariance-stationary stochastic process with E (££]) =1,,.

2. There exist sufficiently large positive constants Cy and Cy and sy > 0 such that

sup Pr (|fj:] > a) < Coexp (—Cha’f) for each j =1,2,...,p.
¢

5. TV 68 0 T, and S0 617 = B (I6]7)| 7 0, j = 3,4
Assumption 2

1. A, and Ay are parameter matrices, the former satisfying Rank (A,) = m > 0.

2. inf; ||a;|| > ¢, and sup;, ||a;|| < C, and for any N =n+m (m being a finite integer)

N
Amax (n_l Z aia;) < C < oo, (6)

i=m+1

N
Amin <n—1 > a,-a;) > ¢ > 0. (7)

i=m+1

Assumption 3

1. The n x 1 vector u; is defined by
u; = Hey, (8)

where
Er = (5m+1,t; 5m+2,t7 Ce ,€Nt), ~ IID (0, In) s (9)

and sup, T~ Y1, S0 [Cov(ew, ew)| < C < o0.
2. There exist sufficiently large positive constants Cy and Cy and s. > 0 such that

sup Pr (leir| > a) < Cpexp (—Cra™).
it

3. H = (hyj) is an n X n matriz with fived coefficients, with bounded row and column sum
norms, formally |[H||, = sup; >, |hi;| < C, and |[H||, = sup,; >3, |hij| < C. Further-
more, Amin(HH') > ¢ > 0.

Assumption 4 f; and ¢;, are independent for all i, s,t.

Remark 1 Most of the above assumptions relate closely to those made in the literature on the
large dimensional factor models (see Remark 2 below). Restricting the covariance matriz of
f, to be the identity matriz is an innocuous simplification, since the factors are identified only
up to a p-dimensional rotation. However, since the methodology proposed in this article goes
beyond estimation in a large-dimensional factor model, some of the assumptions made above
are slightly stronger than those made in the literature. Covariance stationarity of the common
factors is one such restriction but does not rule out conditional heteroskedasticity. Our use of



results from the multiple testing literature assumes that the probability distributions of €;; and
fit have exponentially decaying tails. While this assumption is standard in high-dimensional
statistics, it implies that all moments of €, and fi; exist and thus sharpens our assumptions
beyond those required for the estimation of unobserved factors. This assumption simplifies the
theoretical analysis. It can be relaxed, considerably in the case of fi;, and replaced with moment
assumptions, at the cost of more complex proofs. We choose to avoid this complexity as we
are mainly focused on suggesting and analyzing a new methodology. Furthermore, to establish
consistency of our proposed criterion, we assume £ to be independently distributed across i
and t.5 Still, dependence between the elements of the unit-specific component u, is allowed
for by Assumption 3 which admits weak cross-section correlation. The rank condition on A,
in Assumption 2 ensures that m is identified and that X, is pervasive. Assumption 2 implies
strong factors in the sense that the fraction of cross-section units affected is asymptotically non-
negligible. This is a standard property of latent factors in the related literature, as is Assumption
4. On this see, for example, Assumptions L and LFE in Bai and Ng (2008).

Remark 2 A further consideration concerns how the above assumptions relate to those of the
standard factor model literature as set out, for example, in Bai (2003). As noted above our
assumptions are stricter, and therefore imply the assumptions made by Bai (2003). In partic-
ular, Assumption 1 implies Assumption A of Bai (2003), Assumption 2 implies Assumption B
of Bai (2003) and Assumptions 3 and 4 imply Assumptions C, D, E and F1-F2 of Bai (2003)
while we note that we have no need for Assumptions F3-F4 of Bai (2003).

As shown in the next section, it is possible to consistently estimate the parameters of the
static factor model (5), even if the variance matrix of the N x 1 vector v; = (ogml,ug)’,
containing the idiosyncratic errors is singular when m > 0. In our theoretical derivations and
Monte Carlo simulations we only require that p,,.. > p is known and base our analysis on p,,q.
principal components of z; fori=1,2,... , Nandt=1,2,...,T.

4 Identification of pervasive units via thresholding of er-
ror variances

The idea behind our detection procedure is simple. It exploits the fact that there is a clear
separation between the fit of pervasive and non-pervasive units in terms of the factors, f; for
sufficiently large sample sizes. In the context of the restricted factor model representation (5),
a clear separation between a pervasive and non-pervasive unit could be achieved if the common
factors f; as well as x; are observed. In such a case only pervasive units (with exponent o = 1)
will be perfectly correlated with f;. But in practice where only observations on x; are available
to the econometrician, the fit of cross-section specific observations can only be evaluated in
terms of a factor estimate f, . Finite sample error in the estimation of the true factors entails
an imperfect fit, and hence would yield strictly positive residual variances, for all cross-sections
(irrespective of where they are pervasive or not). However, residual variances for non-pervasive
units remain bounded away from zero due to their non-degenerate idiosyncratic error, u;, even
asymptotically as N and T" — oo. By contrast, corresponding residual variances for pervasive

6This assumption can be relaxed considerably by requiring €;; to follow a martingale difference process over
t, or even to be a strong mixing process with sufficiently small mixing coefficients.



units exclusively contain sampling errors due to the fact that f; is replaced by its estimator f.
This latter source of variation vanishes as the sample size increases. In situations where prior
information allows narrowing down the number of potential pervasive units to a small set, it
would generally be possible to exploit the behavior of residual variances to develop a statistical
test for the absence of idiosyncratic variation in a given cross-section. However, in the context
of this study , any cross-section is considered to be potentially pervasive. This amounts to a
high-dimensional statistical problem for which standard testing approaches are ill-suited due
to the inherent difficulty of controlling size. For this reason, our detection procedure is based
on classification of cross-sections by means of a threshold rule applied to residual variances.
With this in mind we first extract the first pya, principle components (PC) of the observa-

tions x forve=1,2,...,N; t=1,2,...,T. We then compute the residual sum of squares from
the regressions of z;;, for 2 =1,2,..., N on f;, where f; is the PC estimator of f; with p = pax.

Specifically, we compute
o X Mgx;

Oir =~ fori=1,2,..., N, (10)

where x; = (21, Zio, . . ., Ti7)’,
A A A 71 L
M%:IT—F<FF> P (11)

and F = (f'l,f'Q. ..,f;)". We then determine a threshold, C2%, > 0, such that if, and only
if, N6% < C%q then unit i is selected as pervasive. Below we proceed by analyzing the
asymptotic properties of 6%, and sketching steps that lead to a procedure that consistently,
namely with probability tending to one, selects only pervasive units. Formal proofs are given
in the Appendix. But first we provide an overview of the literature on estimation of F and A
and derive asymptotic properties for functions of their estimators that are needed to establish
our main theoretical results.

4.1 Consistent estimation of A and F by principal components

Let X = (xy,X2,...,Xn) be the T' x N matrix of observations on z;; for i = 1,2,...,N;t =
1,2,...,T. It is well known that the T' x T matrix XX’ and the N x N matrix X'X have the
same eigenvalues. Denote the first p largest eigenvalues of these two matrices by (p1, p2. - - -, fp)

and the associated orthonormal eigenvectors of XX’ and X'X by the T' x p matrix P and the
N x p matrix Q, respectively, and note that by construction P'P =1,, and Q'Q = I,,, where
I, is an p x p identity matrix. Consider now the following PC estimators of F and A:

A=VNQ, (12)
~ 1 ~ 1 ~
F:VWXQ:NXA (13)

Given orthonormality of the eigenvectors Q, note that N-1A’A = I,. The factor estimator
(13) satisfies

/

T

=g
=g

= Dy, (14)



where Dy = (NT)"'Diag (p1, ps. - -, pp). This follows since T-'F'F = (NT)'Q'X'XQ,
and noting that Q are orthonormal eigenvectors of X'X. Alternative estimators of A and F,
suggested by Bai and Ng (2002), are given by

F = VTP, (15)
- 1 -
A = -X'F, (16)

where (15) satisfies T'F'F = I,. Bai and Ng (2002) also consider the following transformation”

A AN —1/2
- .~ [ FF A A —1/2

where the last step follows from equation (14). In the first instance and to proceed with the
derivation of our pervasive unit detection procedure, we discuss the relationships between A,
F and A, f‘, and show that they are equivalent in the context of this paper. This equivalence
result considerably simplifies the derivations and proofs since the probability limit results in
Bai and Ng (2002), as well as the additional results established in the Appendix, relate to F
and A, whilst for the derivations of our proposed thresholding criterion, it is much simpler to
work in terms of F and A.

We first note that F and F only differ by the non-singular rotation matrix ]f)J:,lT/2 Then,
using (17) it readily follows that

A~ A A _1 A = — d
Mg = Iy — F (FF) F=Mz=1Ir—F (FF) F, (18)

and hence

It is helpful to bear in mind the following relationship between the two sets of estimators <f‘, A)

and (f‘, A) Note that, by Lemma A.3 in Bai (2003), Dyr 2 D, where D is a diagonal matrix
with finite elements (see the proof of Lemma A.1 in Bai (2003)). It follows that

|Dar| = 0,1). (19)

Further, FA'= FA holds since the common component of X, i.e. FA', is uniquely determined
by the separation assumption which requires f/a;, to be strongly cross-sectionally dependent
whilst vy is cross-sectionally weakly correlated. (See Assumptions 2 and 3). Hence, recalling
the relation (17) we must have
F=FDy>, and A=AD /", (20)
Using the estimators (15)—(16), Bai and Ng (2002) show in their equation (5) that

"Note the typo in the corresponding equation in Bai and Ng (2002).
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1 [~
—|F —FH
TH NT

2
F 0%

where 0%, = min(N,T), and Hyr is a non-singular p x p matrix that could depend on N
and 7', so long as its probability limit exists and is non-singular. Using (21) and the fact that
HHj\,lTH = O,(1) holds by the properties of Hy, then

1 ~ 2 1
_|lF-F H —0, (-], 22
77 -Faw -0, () (22)
where Qnr = Hy, noting that this matrix is non-singular and satisfies ||Qnrl|p = O,(1).
. - . 112
Setting Qnr = D}@, and noting the relation between F and F, we also have 7! =
O, (0x7), and more generally,
1
HF FSNTH 0, (). (23)
ONT

for any non-singular p X p matrix Syr that satisfies ||Syr|| = O, (1). It is obvious that (21) is
an important, well known, result that plays an important role in our analysis. However, we need
further basic results that, to some limited extent, go beyond those existing in the literature.
We provide those in the following proposition. To simplify the exposition and without loss
of generality, we set Sy7 = I,. Since only the product FA' is identified, this restriction is
innocuous and implies the normalization N"TA’A = I,

Proposition 1 Under Assumptions 1-4, and setting Syt = 1I,,, we have

ko] o, g) (A)
|a- 4] o, g) (B)

F 5NT

v (a0 8)], =0, (7).
IVAl = 0, (VNT), (D)

| (0= 8)| =0, (57, ®

where B and A are defined by (13) and (12), and Ay denotes the true value of A, and 0% =
min(N,T).

The above proposition follows from Lemmas 3-6 set out in the Appendix. For general
rotation matrices Hy7, Qnr and Sy, Proposition 1 can be used to obtain

v(A _NAOH;VT) o, ( @%) | o

F

11



The matrix Hyr has been introduced into the expression above in order to ensure compatibility

with the results (21) and (23). Again, V <A - AOH]_V%F) =V (AHNT - A0> H,}, so that

i (i) < | (- ),

and letting Hyp = 1/QSNIT, we have
[V (40~ ADvr'sii)], < 0 00, |V (& - aomti )]

Recall that A = Af);f by equation (20). Hence,

fo (- as)], =0 v (3~ i)
o (4T) .

6NT

by the equality Hy} NT = }@S ~nr and application of result (24). This concludes our discussion
of principal components estimators. The preceding results will be extensively used in the next
section under the simplifying assumption Sy =1, .

4.2 Thresholding of 6%

Equipped with the results of Lemma 1, we consider the asymptotic properties of 62., defined
by (10). Our aim is to develop a threshold C%, such that N6Z < C%, with probability
approaching 1 as N, T — oo if cross-section i is pervasive, while the reverse is true if cross-
section 7 is non-pervasive. First, assume that a given unit i is pervasive. By equation (5), we
have x; = Fpa;, where Fy is the T'x m matrix of observations on the true factors. Consequently,
the sample error variance of unit ¢, once the effects of estimated factors are filtered out, is given
by

&2 _ a;F{)MFFOaz

T T )

/

a; (FO — F) Mf‘ <F0 — F) a;

- - . (26)

A I A
The last result is obtained noting that F{MzF, = (FO —FS NT) Mz <F0 —FS NT), for any
positive definite matrix, Syr. Now, using (5) and post-multiplying both sides by Ay we also
have
XA, FoAjAy VA, VA,
prng = F e
N N N TN
where to derive the lastﬂstep we have made use of the normalization N"'A{A, = I,,,. Further-
more, since F = N7!XA by equation (13), then

(rr) - X v

12



and

X (A0-A)  ya
M;F, = Mg _ VAo

N N
Using (5) here to substitute out X,
FoAj (A0—A) V(A -A) VA
0
vaFO = Mﬁ‘ N + N - MF < N ) (27)

Mg (FO _ 1‘«“)NA3 (AO _ A) . M,V (;30 _ A) i (V;?O) |

Using the above results in (26), 67, can be written as

Né62. = By + Bp + ... + Bg. (28)
where
'ALV'M VA,
By = S0 RO (29)
al AL V' MV (AU - A) a;
al A\ V'M; <F0 - F) A, <A0 - A) a;
By =2 = , (31)
~ / ~
al (AO - A) VMV (AO - A) a;
~ , A~ ~
al <A0 _ A) VM, (FO _ F) Al (AO _ A) a;
N / ~\/ ~ ~
o (Ao~ A) Ag (Fo— F) Mg (Fo— F) Aj (A0~ A) a,

If unit 7 is not pervasive, then it is easy to see that (28) is augmented by two extra terms, given
by®

/
_ NvMgv;

Bir T (35)
N/
5 _ NaFMevi Na; (Fo—F) Mgvi (36)
18 — T - T ’

which will be formally taken into account in the proof of Theorem 1 set out in Section A.2 of
the Appendix. Here, we simply note that B;; = O, (N) and B;s = 0, (N).

8Note that in the absence of any pervasive units v; = u;. In general, we use v; (and V) in line with the
general factor model given by (5).
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Using Lemma 1, in the Appendix, we have, assuming that x;; is a pervasive unit,
1 VN
Né6Z = By + O, +0, = |- (37)
OnT 0%

Consider now B;; and note that

a;AjV' M;VAya; < d;V'vd,

NT - NT ~
where d; = Apa;. A threshold C%, can hence be derived by focusing on the expression
(NT)~'d/V'Vd; which bounds the leading term B;; in N6%. If z; is a pervasive unit,

Bil =

d'V'vd,;
Pr (N33 > (%) < P (W . cfw) Fo(l). (38)

if N /6% — 0. Note that
m_{@ingN

63r \/—IN otherwise’
and so the condition for the remainder term to vanish is ‘/TN — 0, as N,T — oo. It is possible

Aj (AO — A) ‘ than
result (E) in Proposition 1, and if stationarity is imposed on E (v;;vy), where V = (v;). For
now, we adhere to Assumptions A-F of Bai (2003), and require that ‘TF — 0, as N,T" — oo.
Under these conditions, we focus on the first probability term in (38) and note that

T N 2 T
dV'vd; = > (Z vjtdij> =Y (dwy)’,
t=1

t=1 \j=1

that this condition can be relaxed if one finds a tighter upper bound for

where d; = Aga; = (di, dia, - - ,diN)/. Note that if the panel contains m pervasive units,
Vi = (015m, u})’, where u; = Hey. See (8). Partition d; = (d};,d},)’, where d;; and d;, are the
m x 1 and n x 1 sub-vectors of d; (recall that n = N —m). Hence

T

T
dV'Vd; = > (djpu)’ = > (dj,Hey)”,
t=1

t=1

where by assumption H is an n X n matrix with bounded row and column absolute sum norms,

and g, = (5m+17t, E oty - - - ,€N,t) ~ 11D (0,1,). Using the above results we can now write
dV'vd, <n> 1 ET: (dg2Het)2
NT N/ T2 \"/n
n 1 T ’ 2
= (%) 7 2 (wien)”. (39)
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where ¢; = n~V2H'd;y = (041, Pios - - -, Pin) . Let
N = Pipi = %d&HH/dn = %dgzzudiza (40)
where 3, = F (u,u}) = HH' and by assumption is time-invariant.? We also have
sup n2, < sup (n~'dyd2) Amax (E4) , and irilf n2, > iIilf (n™'djydiz) Amin (),

where by assumption 0 < ¢ < Apin (Zn) < Amax (Ba) < C < 0o. Noting that, in view of (6)
and (7), we have

N
sup (n~'alAjAua;) < sup 2 ]|” Amax (n_l Z aja;) < C < o0, (41)
i 3 j=mt1
and
N
inf (n"'a;AjAya;) > inf 2y |> A (nl Z aja;) >c>0, (42)
i 3 Pt

we also have sup, (n'd/,d;2) < C, and inf; (n7'd}yd;2) > 0, and overall

sup n, < C, and infnZ, > 0, for all n.

Now using (39) in (38), we have
b [not, = (%) ¢34 <P lz de? > T () Cha

i v|(whe” > () Cha| +01). (43)

+o(1)

where the last line applies Lemma A1l in the online supplement to Chudik, Kapetanios, and
Pesaran (2018) in order to bound the tail probability of a non-negative sum by the sum of
individual tail probabilities. Additionally, letting ¢ie; = Z?Zl ij€jt, we can write

Pr [(‘ngt)Q > <%> C?VT} =Pr <|<Pz€t| > <N>1/2 CNT)

( - () CNT) .

In order to proceed from the above expression, we note that under Assumption 3, Var (2?21 goijsjt> =
Z?:l 9012] = 7712717 and

5 € jt

Pr(leji| > a) < Cyexp (—Cha’)

for all @ > 0, s > 0 and some fixed constants Cy and C}. This assumption allows us to employ
a concentration inequality in order to bound the tail probability of our expression of interest

9However, one can still allow for conditionally time-varying covariances.
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by an exponential function of its second natural moment. More specifically, we apply Lemma
A3 of Chudik, Kapetanios, and Pesaran (2018) to obtain

n o 2
Pr(Z%ﬁjt >CNT) Sexp[ (1—7)" Ckp

2
jil 277277/
for some 0 < 7 < 1 and Cyy = O (n), with 0 < A < Zi—; (note that n/N =1—m/N = 1),
where using (44) in (43) and assuming that unit 7 is pervasive yields

, (44)

—(1-7n)2C%, <n) Lo(1),

. n
Pr (NO'?T > <N> C’?VT> <Texp o —

N

for some 0 < m < 1 and 7?2, as defined by (40). Hence,

Pr [N&?T < <—> Cr | iis pervasive} >1—exp

log (1) — L= Cr _;;;C%T (%)] 7

and
n

Pr [N&?T > (N> C%rl i is pervasive} — 0,
as N,T — oo, and \/TN — 0, and if (note that n/N — 1)

1—m)2C?
log (T') — (zﬁ# — —00.
nin

This last condition is satisfied if (again setting n/N to unity)

2log (T) n;,
1-m)?* "

Chr >

or if

for some C' > 1. Accordingly, 7 can be selected as a pervasive unit if, for some C' > 1,
62 < w Our Monte Carlo results presented in Section 6 show that the simple choice
C =1, works well in practice.

We note further that in the Appendix we formally show that all remainder terms in (37),
will not exceed the threshold, with probability approaching one if the unit is pervasive. We also
show that B;; = O, (N) and B;s = 0, (), and further, using (52), that the residual variance,
62, will exceed the threshold with probability approaching one if the unit is not pervasive.

An important issue relates to the estimation of n?,. Since n = N — m and in practice
m is not known, at the estimation stage we assume m = 0, and note that under m = 0,
then n?y = N~ 'alA[X,Apa; for which a consistent estimator can be obtained using the PC
estimators of a; and Ay, and a suitable threshold estimator of ¥,. Recall that when 3, = HH’
and since by assumption H is a row and column bounded (see Assumption 3), then 3, is
also row-bounded and hence satisfies usual sparsity conditions assumed in the literature on
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estimation of large covariance matrices (see, e.g., El Karoui, 2008 or Bickel and Levina, 2008).
Then, n?y can be consistently estimated by

2y = N'a/A'S, A4, (45)

where A is given by (12), &, is the OLS estimator of a; in the regression of x; (the selected
pervasive unit) on F, where the latter is given by (13), and X, = (;;) is a consistent estimator

of ¥,. Here we use the multiple testing estimator of Bailey, Pesaran, and Smith (2019) given
by

1 <& O
Gij = Dl pij = 7
t=1 Oii Ojj

where w;,t = 1,2,...,T are the OLS residuals from the regression of x;; (the selected perva-

sive unit) on F (including an intercept in all regressions), ' (-) is the inverse of cumulative

distribution function of a standard normal variate, 7 is the nominal size for the multiple testing

procedure, which we set to 1%, and ¢ is set to 1.5, which allows for possible departures from

Gaussian errors, u;;. Other estimators can also be used such as the universal thresholding by

El Karoui (2008) and Bickel and Levina (2008), and the adaptive thresholding by Cai and Liu
(2011).

Our threshold detection algorithm, referred to as o? thresholding, can be summarized as
follows:

Algorithm 1 Let x; be the T x 1 wvector of observations on the i-th unit in the panel, and

X = (xq,X2,...,xn) be the T x N matriz of observations on all the N units in the panel.
Suppose that p < Pmax, Where puax s selected a priori to be sufficiently large. Compute F =

\/LNXQ, where Q is the N X pmax matrix whose columns are the orthonormal eigenvectors of

X'X, such that N'Q'Q =1 Compute &;, vy and 62, to be the OLS estimator, residual
and residual variance of the regression of x; on F, namely

Pmax *

A A -1 kel
éi = (F,F> F/Xia
A~ PP N A
W = (Wir, Uia, -, Uir)' = Mpx; = [IT - <F/F> F,} .
6 = T X Mpx;.

Sort 6% in ascending order and denote the sorted series by &?I)T, ‘3(22)% . ,&(QN)T with &(2%')T
being the i'" smallest value. Consider the cross-section indexes iy, ia, . . ., ip,.. corresponding to

&(21)T, 6(22)T, . 75-(2pmax)T . Then, select unit j € {iy,ia,...1 } to be pervasive if

Pmax

202\ log T
~9D IN
N A (46)
where 0}y is given by (45).

The following theorem provides a formal summary statement of the preceding analysis.
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Theorem 1 Suppose that observations on xy, for i = 1,2,...,N, and t = 1,2,...,T are
generated according to the general linear factor model given by (1) and (2) with m pervasive
units. Let Ip be the set of indices of the pervasive units, and Inp its complement, with Ip
allowed to be an empty set. Denote by fD and fDN their estimates based on the threshold
criteria (46). Let Assumptions 1-4 hold and g — 0. Then as N and T — oo, jointly, we

have

lim Pr ({fD = ID} N {fND = IND}) = 1.
N, T—oc0
This theorem establishes that the proposed error variance threshold criterion is consistent,
in the sense that it correctly selects the pervasive (if any) and the non-pervasive units asymp-
totically.

Remark 3 Note that both the theoretical exposition above and the formal arguments of the
Appendixz apply both to the case of no external factors as well as the case where all units are
affected by a finite number of external factors, represented by g, in (1) and (2).

5 A sequential, multiple testing version of the ¢? thresh-
olding

The o2 thresholding procedure, has good but not exceptional small sample properties as we
illustrate in the online supplement to this article. However, it provides a basis for further
development. The first point to note is that while the method is good at detecting the pres-
ence of pervasive units, in general it tends to pick too many units as pervasive. Finite sample
adjustments are needed to achieve a more conservative detection outcome. A simple and ef-
fective refinement of the main method is a sequential algorithm that detects pervasive units
one at a time. Considering a sequential algorithm suggests the use of pervasive units that have
been identified at earlier steps of the procedure as observed factors. This reduces the number
of unobserved factors to be estimated given a maximum number of considered factors, pae-
Therefore, the static factor model (5) employed to conduct o? thresholding is replaced by the
augmented factor model

Tyt = ft*/a: + letb:;z + Uityt = 1, 2, e ,T,’L = 1, e N17 (47)

where x?, is a 7 x 1 vector of identified pervasive units (the row ¢ of the 7" x r matrix X7), ff is a
Pmaz — T Vector of unobserved common factors and v;; constitutes the idiosyncratic variation of
unit 7 at time point t. With regards to the procedure of Section 4.2, the role of o thresholding
is not to determine the number and the identities of the pervasive units directly. Instead, o2
thresholding is used to determined whether or not there is evidence of remaining pervasive units
in the data, given the pervasive units that have been identified. Being initiated with r = 0
(i.e. no identified pervasive units), Ny = N —r = N and some chosen value of p,,q, subject to
the condition py,q; > m + 1, the sequential algorithm, referred to as S — o2 thresholding is an
iteration of the following two steps:

Algorithm 2 1. Conduct a? thresholding using model (47), with m* = Ppex — 7 estimated
factors. Let m be the estimated number of pervasive units estimated using Algorithm 1.
If m =0, stop and conclude that there are r pervasive units.
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2. If m > 0, obtain ©* = argmin; ;. Append x;+ to X! and drop x;« from X. Update r to
r+1 and Ny to N; — 1.

The two steps are repeated until either m = 0 in the first step or 7 = p,,.. at the end
of step 2. The number of pervasive units is then m = r and their identities correspond to
the indices of the columns in the initial 7' x N vector X that are found in the 7" x r matrix
X = (X5 X))

Effectively the method constructs residuals of the remaining units on the selected units and
repeats the selection on these residuals. The use of residuals in the algorithm’s steps requires
further theoretical refinements. These are discussed in Section A.3 of the Appendix where it is
shown that our proposed threshold is valid only if N < T', which is a more restrictive condition
than that of Theorem 1. In particular, we prove the following result, in Section A.3 of the
Appendix.

Corollary 1 Suppose that observations on x;, for i = 1,2,...,N, and t = 1,2,...,T are
generated according to the general linear factor model given by (1) and (2) with m pervasive
units. Let Ip be the set of indices of the pervasive units, and Inp its complement with Ip
allowed to be an empty set. Denote by Ip and Ipy their estimates based on S — o2 thresholding.
Let Assumptions 1-4 hold and ]}7 — 0. Then as N and T — oo, jointly, we have

lim Pr ({jD = ]D} N {jND == ]ND}> =1.
N, T—oc0

If N > T, then an alternative threshold could be considered. This is given by

262 log T
A,2 <L w2
UZT —_ T )

where 62, = T™! ZtT:1 (i — X*tfyz) , with 47 being the estimated vector of slope coefficients
from a regression of Mgx; on MgX?*. This is justified in Section A.3. As its small sample
properties are inferior to those of our main procedure we do not pursue this further in the main
paper but only in the online supplement. However, it is important to note that it provides a
theoretical justification for our general methodology when N > T.

Finally, the sequential algorithm can be supplemented with an additional multiple testing
hurdle in order to reduce the risk of falsely detecting a pervasive unit in small samples. Anal-
ogous to the plain sequential algorithm discussed above, the extended algorithm is initiated
with r =0, N; = N and some chosen value of p,,., subject to the condition p,,q. > m + 1. It
consists of the following five steps which are repeated until the estimated number of pervasive
units m in the first step is equal to zero:

Algorithm 3 1. Conduct o? thresholding using model (47) and m* = pypex — 7 estimated
factors. Let m be the estimated number of pervasive units estimated using Algorithm 1.
If m =0, stop and conclude that there are r pervasive units.

2

2. If m > 0, obtain ¢* = argmin; 6;. For each j =1,...¢* — 1,0+ 1,..., Ny estimate the

model

Tj =y + xey; + QG+ xyby v, t=1,2,..,T, (48)
where the unobserved factors £ are estimated by the eigenvectors associated to the pyaz—7
largest eigenvalues of X_x X' o with X_j = (X135 ... X1, Xir 415 -+ - 5 XN, ) -
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3. Carry out N1 — 1 indwidual t-type tests to check the statistical significance of the slope
parameters ¥ for all j # i in (48). These tests have the form

T
Zt:l wzz*t

AN 520
T Zt:lvjt

>
¥

S %
<

where v, =, — [ — x5 — £&5 +x5b% . Let the critical value for each of these tests
be given by 1 [1 — m], where the nominal size of the individual tests, 7, is chosen
by the investigator. In our analysis we set m = 0.01.

4. Let M denote the number of rejections among these Ny—1 tests. Iflog(M)/log(N) < 1/2,
stop and conclude that there are r pervasive units.

5. Iflog(M)/log(N) > 1/2, append x;« to X} and eliminate x;« from X. Update r to r + 1
and N1 to N; — 1

We refer to this algorithm as Sequential-MT o2 thresholding or SMT — o2 thresholding
for short. Two remarks concerning algorithm 3 are in order. First, deviating from a standard
t-statistic when conducting N; — 1 significance tests is a necessary adjustment to account for
the nonstandard properties of the auxiliary regression (48). If i* denotes the index of a true

~

pervasive unit, then the set of regressors (xi*t; £ ) is asymptotically multicollinear since f't*’

is consistent for the space spanned by all common factors driving zj;, including z;-;. As shown
in Appendix A.4, this characteristic of the model affects the properties of a test statistic for
the statistical significance of 77 and is resolved by replacing the standard estimator of Var (’ij*)
with a different standardization for 47. A further important point is that we need to have an

estimate of the full common factor space, such as ft*. Otherwise, even non-pervasive units
will appear significant in (48) since the impact of external factors and pervasive units will turn
them into a proxy for unaccounted sources of common variation.

Second, the rule log(M)/log(N) < 1/2, or M < N'/? is motivated by the fact that if a
factor enters only M units, where M = o(N 1/ %), then, it is considered to be a very weak factor,
and under certain conditions, it is not detectable using principal components - see, e.g., Bailey,
Kapetanios, and Pesaran (2016). Again, after stopping the sequential algorithm, the number
of pervasive units is m = r and their identities correspond to the indices of the columns in the
initial 7' x N vector X that are found in the T x r matrix X* = (x%;...;x5p)".

The additional multiple testing step ends up being very effective in small samples and
is therefore our preferred approach. While we do not provide a fully rigorous proof for the
consistency properties of the multiple testing step we refer the reader to Chudik, Kapetanios,
and Pesaran (2018) where a full analysis of multiple testing, within a multiple regression setting,
is provided. From that analysis and, in particular, Theorem 1 of that paper, it readily follows
that the multiple testing step selects with probability approaching one, as N,T" — oo, only
pervasive units.

20



6 A comparative analysis of detection procedures by Monte
Carlo simulations

Using Monte Carlo simulations we now investigate the small sample performance of our new
method relative to the methods proposed by Parker and Sul (2016, henceforth PS) and Brown-
lees and Mesters (2018, BM in the following).!® The PS method yields identical outcomes
irrespective of whether the observations are standardized to have in sample zero means and
unit variances or not. Our proposed method, being based on residuals, is not affected by
demeaning of the observations and the scaling is done through the determination of the unit-
specific thresholds, and hence standardization will not be an issue. In contrast, BM’s detection
method can be quite sensitive to standardization in finite samples, although asymptotically
it should not matter whether the individual series in the panel are standardized. The BM
method is also applied either including all the N units, or only the N/2 most connected units
when selecting the pervasive units.!! Accordingly, we consider four variants of the BM method:
modified and unmodified with and without standardization. We shall refer to these variants as
BM and BM (standardized) when only the N/2 most connected units are considered at the
selection stage, and unmodified BM and unmodified BM (standardized) when all the N units
are included when selecting the pervasive units. In the paper we focus on the modified version
of BM, and give the results for their unmodified version in the online supplement. It is clear
that fewer units will be detected when the modified version is used, even though the effect of
standardization is less clear cut. Amongst the various o2 thresholding procedures discussed, we
focus on SMT—o? thresholding as described by Algorithm 3.2

In accordance with the formal presentation in Section 3, we simulate the pervasive unit
model as

Xta = Mg + Aot + hy, (49)
X = My + Bxyo + Apge + 1y, (50)

fort =1,2,...,7. The N x 1 vector of fixed effects, u = (p,; ), are drawn from I7DU (0, 1).
The kg x 1 vectors g;, for t = 1,2,...,T, representing the unobserved common factors, are
generated as g; = R;/2<g*yt —271,)/2, where 7, = (1,1,...,1)’, g, is a k x 1 vector generated
as I1Dx?(2), Rgl,/ ? is the square root of the ko x ko matrix R, defined by

R, = (1 — p)Ix + pyTiT5,

where p, represents the pair-wise correlation coefficients of the distinct (4, j) elements of g,
assumed to be the same across all ¢ and j = 1,2, .., k. Specifically, Cov(g;) = R,. Similarly,
the mg x 1 vector h; is generated analogously as

hy, = Ry*(hy — 27)/2, Ry = (1= pu) Iy + puTon T,

10The detection methods of Parker and Sul and Brownless and Mesters are described in some detail in the
online supplement.

1Tn their simulation analysis BM seem to be using the unmodified version of their method without standard-
ization, whilst in their empirical applications they apply the modified version after standardization. See Section
6 of Brownlees and Mesters (2018).

12Simulation results for other two variants of 0% thresholding, described by Algorithms 1 and 2, are provided
in the online supplement.
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where h,; ~ ITDx?(2). It follows that Cov(h;) = Ry, and p;, represents the pair-wise correla-
tions of the elements of h;, assumed to be the same across all pairs. The mg x kg matrix A,
and the n x ko matrix A, are obtained as IIDU(0,1). The correlation coefficients p, and py,
are drawn from U(0.2,0.8), and are allowed to vary across replications.

The importance of the pervasive units for the non-pervasive units is represented by the
(N —myg) x mg loading matrix B = (b;;). To allow for the possibility of both strong and weak
pervasive units, b;; are generated as
ij{NHDU(O’I) s LN =) 1o N —me j=1.2.... mo, (51)

=0 otherwise.

where as introduced in (4 ), « is the exponent that measures the degree of dominance of x;, in
the panel. For the sake of simplicity, all pervasive units are assumed to have the same degree
of dominance so that a subscript on « is redundant . When o = 1 the units are pervasive, in
the sense that they have non-zero effects on all the N — m( non-pervasive units. This is the
standard case in the common factor literature and ensures that limy_,.o(N — mo)_lB’ Bisa
positive definite mg x my matrix. This condition clearly breaks down when a < 1. As we noted
before, x;, are then referred to as weakly pervasive units.!?
The errors u; = (u;) are generated as heterogeneous first order autoregressive processes

Uiy = pittyp—1 + (1 — p2) ey, for t = —49,...,0,1,2,...,T;i=1,2,..., N — my,

where p; ~ 1IDU(0.2,0.5). The errors ¢; are allowed to be cross-sectionally weakly cor-

related. To achieve this we set €, = (£y,€0t,...,6m) = El/zqu/QCt, n = N — m, with
3 = diag(o11, 092, - ., Opn), and
L pu 7 !
pe 1 py P
R,=| ri pu 1 pu?
L 1

We set p, = 0.5, 0y = 04;;/4+0.5, and 0, ;; ~ I1Dx?*(2), thus ensuring that E(c;) = 1. Lastly,
Gt = (Goar — 2)/2, where (i ~ IIDX?(2). In order to avoid dependence of u; on its starting
values we discard the first 50 observations. All random variables are redrawn at the start of
each replication of the simulation experiments.

We carry out all the different experiments for the following N and T combinations:

N € {50,100, 200,500} and T € {60, 110,210,250} .

These N and T values allow for both cases where T' > N, which is required for the BM procedure
to be applicable, as well as when T' < N, which often arises in empirical applications, and can
be considered using our proposed method and the PS procedure.

13A unit is viewed as weakly pervasive if it affects a number of cross section units, but the number of the
units that it affects does not rise as fast as the total number of units in the panel (network). See also Chudik,
Pesaran, and Tosetti (2011).
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The above setup allows us to control the number of pervasive units, mg, the number of
external factors, kg, as well as the degree of dominance of the pervasive unit, a. We consider
all myp < 2 and ky < 2 combinations, namely

{m(h kO} = {Oa O} ) {07 1} ) {Oa 2}7 {17 0} ) {1’ 1} ) {17 2}’ {27 O} ) {27 1} ) {27 2} :

In cases where my > 0, we experiment with two values of « = 1 and o = 0.8. Our theoretical
derivations relate to the case of strongly pervasive units, namely when o = 1. However, in
practice it is more likely that the pervasive units are not strong, but still quite influential,
which we represent by the choice of a = 0.8. In the production network literature where the
degree of the dominance can be computed from input-ouput tables, « is estimated to lie in the
region of 0.7 — 0.8. See Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Pesaran
and Yang (2019, Definition 1).
Finally, all simulations in this section are conducted with 2, 000 replications.

6.1 MC results

The first scenario to consider is one without any pervasive units (mg = 0). The results for
SMT—o? and the PS procedures are summarized in Table 1, which gives the empirical frequency
of correctly estimating mg to be 0. This table does not include the detection procedure proposed
by BM, since the BM method pre-assumes that my > 0, and therefore always incorrectly selects
at least one pervasive unit. As can be seen from this table, the SMT—o? thresholding performs
very well, even in the presence of external common factor (namely when ky > 0), so long as N
is sufficiently large. It is only outperformed by the PS procedure when N is small (N = 50)
and there are external factors (kg > 0). Table 2 reports the average number of non-pervasive
units (across replications) that are falsely selected as pervasive by SMT—o?, PS and BM. In
this regard, SMT—c? and PS perform perfectly when there are no external factors (kg = 0),
and register a small number of incidence of false discovery when ky = 1, and N relatively
small. However, the PS procedure seems to break down when the number of external factors is
increased to kg = 2, and its average number of false discoveries reaches 41 with N = 500 and
T = 250. However, the SMT—o¢? thresholding continues to perform well even for kg = 2. As
can be seen from Table 2, the average number of false discoveries of SMT—o? thresholding is at
most 0.7 over all values of N and 7', and tends to zero as N is increased. By contrast, the BM
procedure will always falsely selects non-pervasive units as pervasive even for panels with N
and T large (subject to T' > N). The average number of false discoveries for the BM procedure
lies in range of 3 to 4, and is unaffected by standardization. However, modification of the BM
procedure seems to play a crucial role in controlling the number of false discoveries. If we use
the unmodified version of BM the average number of false discoveries rise dramatically and can
reach around 100 for N = 200 and 7" = 250, with standardization only helping marginally. See
Section S5 of the online supplement for details.

Consider now cases where the DGP contains one or two pervasive units. Table 3 reports the
empirical frequency of correctly estimating the number and the identity of the pervasive units
by all the three detection procedures. The top panel of the table gives the results for all the
three detection procedures when there is one pervasive unit (mg = 1), with and without external
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Table 1: Empirical frequency of correctly identifying the absence of a pervasive unit

SMT—¢? PS
ko =0 kO =0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 100 100 100 100 50 | 994 99.2 99.6 99.8
100 | 100 100 100 100 100 | 100 100 100 100
200 | 100 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100
ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 88.4 86.4 82.7 &80.3 50 | 53.2 92.0 973 97.7
100 | 94.1 92.3 90.7 88.9 100 | 75.5 985 100 100
200 | 99.8 99.2 994 99.2 200 | 90.6 100 100 100
500 | 100 100 100 100 500 | 92.9 100 100 100
ko = ko =
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 61.6 55.9 47.7 44.3 50 | 81.0 80.1 69.5 69.5
100 | 84.0 745 64.2 60.9 100 | 86.6 85.7 63.1 57.4
200 | 98.6 97.7 942 94.1 200 | 82.5 66.1 46.3 39.7
500 | 100 100 100 99.9 500 | 994 46.8 226 17.6

Notes: SMT—o2 thresholding is implemented using Algorithm 3, with pmaez =
mo + ko + 1, where mg is the true number of pervasive units (if any) and ko is
the number of external factors. Threshold in the o2 thresholding step is given by
62, < 272y N~1log(T). PS refers to the Parker and Sul (2016) method by setting
the number of potential pervasive units to N/10 per estimated factor, with the num-
ber of factors selecting using ICp2 criterion of Bai and Ng (2002). See also online
supplement.

factors, namely for kg = 0,1 and 2. The lower part of the table gives the empirical frequencies
when mg = 2, and kg = 0,1 and 2. For the BM procedure we are only able to provide results
when T' > N. The relative performance of the three detection procedures very much depends
on whether the observations are affected by an external factor, and the relative sizes of N and
T. For example, the PS method works very well only if my = 1 and ky = 0, and breaks down
completely if there are external factors or if there is more than one pervasive unit. The BM
method performs well when it is known that mg > 1 and T" > N. By contrast, our proposed
method works reasonably well for all values of mg and kg, and continues to be applicable even if
T < N. Amongst the three methods considered only the SMT—o? thresholding method is able
to select the true pervasive units with probability approaching unity as both N and 7" become
large. Not surprisingly, the small sample performance of SMT—o? thresholding deteriorates as
the number of common factors, be it pervasive units or external factors, is increased. In Table
4 we again consider the average number of false discoveries. The results are similar to the ones
obtained earlier, with SMT—o? procedure performing best overall. It is also interesting to note
that standardization of observations affect the BM procedure adversely. This is particularly
pronounced when mg = 2. Again, the modification of the BM procedure is critical for its
performance. When the BM procedure is applied without modification we again obtain a
large number of false discoveries, as can be seen from the results in Section S5 of the online
supplement.

The above findings continue to hold when the DGP contains weakly pervasive units in-
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Table 2: Average number of non-pervasive units falsely selected as pervasive (mgy = 0)

ko=0 ko=1 ko =2
SMT—o? SMT—o? SMT—o?
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 0 0 0 0 501 01 02 02 02 50| 04 05 06 0.7
100 0 0 0 0 100 | 0.1 01 01 0.1 00| 02 03 04 04
200 0 0 0 0 200 0 0 0 0 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
PS PS PS
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 0 0 0 0 501 09 02 02 0.1 50 | 0.7 1.2 1.8 1.8
100 0 0 0 0 100 | 0.3 0 0 0 100 | 1.0 14 3.7 4.2
200 0 0 0 0 200 | 0.1 0 0 0 200 | 3.2 6.7 10.7 12.0
500 0 0 0 0 500 | 0.1 0 0 0 500 0 262 384 41.0
BM BM BM
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 41 3.7 47 49 501 3.9 40 45 49 50 | 39 38 45 47
100 | n/a 3.6 3.6 4.1 100 | n/a 3.5 3.7 4.2 100 | n/a 3.7 3.6 4.0
200 | n/a n/a 3.2 3.1 200 | n/a n/a 3.2 3.0 200 | n/a n/a 3.1 3.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
BM (standardized) BM (standardized) BM (standardized)

NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50| 41 34 33 32 501 39 33 36 39 50| 36 34 35 3.6
100 | n/a 4.1 3.0 29 100 | n/a 3.4 34 34 100 | n/a 3.2 3.3 3.4
200 | n/a n/a 34 2.8 200 | n/a n/a 3.0 2.8 200 | n/a n/a 3.0 2.7
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: The SMT—o? and PS methods are as described in the notes to Table 1. BM refers to the modified detection method
used in Section 6 of Brownlees and Mesters (2018). BM (standardized) stands for application of BM to data that have been
recentered and rescaled so that each cross-section specific time series has an average of zero and a variance of one. BM methods
are not applicable (n/a) if T < N.

stead of pervasive units. Table 5 reports the results for models with weakly pervasive rather
than strong pervasive units, where the exponent of cross-sectional dependence of the pervasive
unit(s), is set to w = 0.8 instead of w = 1. (see (51) for a definition of a). Not surprisingly, the
empirical frequency of correctly identifying the true weakly pervasive units is generally lower as
compared to the case where the pervasive units are strong. Nevertheless, SMT—o? thresholding
and BM procedure perform reasonably well even in this case. Of course, the BM method is
applicable only in the case of panels with 7' > N and if it is known that mg > 0. In cases where
both BM and SMT—o¢? thresholding are applicable, the proposed method seems to perform
somewhat better, particularly when 7' — N is not that large. Finally, considering the average
number of non-pervasive units, falsely selected, in Table 6 we again note very similar patterns
to those present in Table 4, with SMT—0? again performing best.

7 Empirical Applications

In this section we present empirical applications that showcase our proposed detection method-
ology. We consider three different applications, and report the pervasive units (if any) selected
by SMT—o? thresholding, as well as the methods of Parker and Sul (2016) and Brownlees and
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Mesters (2018). As in the MC section, we focus on the modified version of the BM procedure
(where selection is based only on the N/2 most connected units), but report results with and
without standardization of the individual time series.!4

7.1 U.S. industrial production

We begin with a panel of monthly observations on production of N = 138 industrial sectors
of the U.S. economy over the period 1972m1-2007m12. This data set has been compiled by
Foerster, Sarte, and Watson (2011), and used by Brownlees and Mesters (2018) to study the
presence of pervasive production sectors in the U.S.!> As noted previously, by construction
BM method will end up finding at least one pervasive sector. In fact, Brownlees and Mesters
(2018) find between 2 and 5 pervasive sectors, prepervasively related to the production of
light motor vehicles and aluminum products. They arrive at these results by applying their
modified detection procedure to sectoral growth rates after standardization. In addition to
determining which sectors are pervasive, the authors rank different sectors according to their
level of dominance by ordering the column norms of the inverse sample covariance matrix. A
comparison of this ranking with one based on the explanatory power of estimated common
factors on sector-specific series is provided, revealing substantial differences in the suggested
list of highly influential sectors.

We apply all the three detection methods to the full dataset as well as to the two sub-
samples, 1972m1-1983m12 and 1984m1-2007m12, investigated in Foerster, Sarte, and Watson
(2011). For application of the PS method we selected the number of factors using the 1C)
criterion of Bai and Ng (2002). We set the maximum number of factors to 10 and obtain
1 common factor for the full sample and the first sub-sample, and 2 common factors for the
second sub-sample. In application of the SMT—c? we do not need to estimate the number of
factors, but set a maximum value for p = m + k. To this end and to cover a wide range of
possible factors, and to check the robustness of the SMT—o? thresholding to the choice of pqa,
we tried all the values of p., in the range {2,3,4,5,6}.

The results are summarized in Table 7. The top panel of the table gives the results for
the full sample, followed by the two sub-sample results. Starting with SMT—o? thresholding,
we find that no sector is identified as pervasive, with the result being robust to the choice of
Pmaz and the sample period. This conclusion is in line with the estimates obtained by Pesaran
and Yang (2019) who make use of input-output tables for the whole U.S. economy. The PS
procedure arrives at the same outcome and does not detect any pervasive sector when the full
sample is used, but identifies Plastic Products as pervasive in the first sub-sample, and as many
as 19 sectors as pervasive in the second sub-sample. The list of these 19 sectors is given at the
bottom of Table 7, and includes a diverse array of sectors such as Cheese, Breweries, Plastic
Products, Shipping Containers, and more.

The results from the application of the BM procedure are mixed and depend on whether the
observations are standardized, and the sample period considered.'® As can be seen from the
last two columns of Table 7, for the full sample BM selects Fluid Milk as the pervasive sector if

MEstimation results for unmodified BM without restrictions on the maximum number of pervasive units can
be found in Section S6 of the online supplement.

15Tn their study, Foerster, Sarte, and Watson (2011) make use of a quarterly version of this data set, and BM
choose monthly frequency to ensure 7' > N, which their detection procedure requires.

16The detection outcomes also very much depend on whether one uses the modification of the BM procedure
or not. The results for unmodified BM is in the online supplement.
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observations are not standardized, and selects Automobiles and Light Duty Motor Vehicles, and
Motor Vehicle Parts, as pervasive when observations are standardized. For the two sub-samples
the results are much more dispersed, and only Motor Vehicle Parts is included in the list of
the pervasive sectors for all sub-samples when the observations are standardized. Considering
that by construction BM will end up with at least one sector as pervasive, and the Monte
Carlo evidence suggests that BM is particularly prone to false discovery when observations
are standardized, the detection outcome of the BM procedure for this application should be
approached with caution.

In addition to splitting the sample at the end of 1983, we also applied our detection method
to rolling samples with window sizes of 10, 12, 15 and 20 years, in order to obtain further
evidence on how the number and identity of pervasive units could be subject to change. As
previously, the maximum admissible number of common factors and pervasive units is set to
Pmaz € {2,3,4,5,6}. For the sake of brevity, only SMT—¢? thresholding is considered. The
results unanimously confirm our previous finding that there is no pervasive sector in the U.S.
industrial production.

7.2 Are there pervasive economies or equity markets in the global
economy?

In a second application, we use quarterly observations on real GDP and real equity prices
over a number of countries and equity markets spanning the period 1979Q2-2016Q4, providing
T = 151 observations for each country.!” Data on real GDP is available for 33 countries and
account for over 90 percent of global output. The equity price observations are available for 26
countries, and include all major equity markets.

7.2.1 Cross country output growths

A recent investigation of cross country correlation of real GDP growth rates is given in Cesa-
Bianchi, Pesaran, and Rebucci (2018), and shows that accounting for one common factor is
enough to reduce average pairwise cross country correlations to almost zero. Despite this
suggestive evidence for the presence of only one factor in GDP, we consider a wider set of
choices concerning the number of latent factors, and experiment with p,.. € {2,3,4,5,6}
when applying o2 thresholding. As in the previous application, the results from the application
of SMT-0? thresholding are compared to the other two detection procedures (BM and BM
standardized as well as PS). The results are summarized in Table 8. In this application SMT—¢?
thresholding selects 1 country (France) as pervasive in terms of GDP growth when p,,., = 3,4
or 5, and selects no pervasive country if p,,.. = 2 or 6. Given the cross country growth evidence
provided by Cesa-Bianchi, Pesaran, and Rebucci (2018) it is more reasonable to rely on the
detection evidence when p,,.,, = 2, which is compatible with assuming one common global
technology factor (i.e. ko = 1) with one possible pervasive country, say U.S., (with mg = 1)
which gives ppq = 2. Also if we use the IC)y criterion of Bai and Ng (2002) to select the
number of factors across country growth rates we also end up with one factor. (see footnote 1
of Table 8). So we conclude that there is no compelling evidence for the presence of a pervasive
country in terms of output growth, and the detection of France as a pervasive economy when

17Cross country data is taken from the latest vintage of the GVAR data set as described in Mohaddes and
Raissi (2018).
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Pmaz = 3,4 and 5, is most likely a false discovery. This conclusion is also supported when we
consider the result obtained from the application of the PS procedure to the GDP growth series.
In contrast, BM procedure selects France and Spain as pervasive economies when the growth
series are not standardized, and selects an additional 9 economies (a total of 11 economies out
of 33) as pervasive, if observations are standardized. This outcome is difficult to interpret and
most likely reflects the tendency of the BM procedure to over-select as documented in the MC
section.

Table 8: Pervasive unit detection methods applied to cross country rates of change of real GDP
(33 countries) and real equity prices (26 markets) over the period 1979Q2-2016Q4 (151 time
periods)

Rate of change of real GDP

Approach: SMT—g? PS BM BM (standardized)

Pmag 2 {3,4,5} 6 1f

Number of pervasive units: 0 1 0 0 2 11

Identities: France France Italy UK
Spain Spain  Malaysia

France Belgium
USA Finland
Germany South Africa

Canada

Rate of change of real equity prices

Approach: SMT—o2 PS BM BM (standardized)
Pmax 2,3,4,5,6 ot
Number of pervasive units: 0 6 6 1
Identities: France USA Netherlands
Germany Netherlands
Malaysia UK

Netherlands Canada
Singapore  Switzerland
Thailand Germany

t This value minimizes the ICp2 criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Note: Data taken from the GVAR database (Mohaddes and Raissi, 2018).

7.2.2 Cross market rate of change of real equity prices

The results for the rate of change of real equity prices are summarized in the lower panel of
Table 8. In this application SMT—o? thresholding is the only method not identifying any of the
equity markets as pervasive. Both PS and BM procedures select 6 markets as pervasive, and
agree only on Germany and Netherlands as the pervasive equity markets. Interestingly enough,
BM only selects Netherlands as pervasive when observations are standardized. Once again we
find the BM detection method to be highly sensitive to standardization of observations.
Finally, it is important to bear in mind, that not finding a pervasive unit does not mean
that the global economy is not subject to global shocks. Our results suggest that once we allow
for the possibility of global shocks, it is difficult to find convincing evidence that any country
can be singled out as pervasive. This result is also compatible with the presence of influential
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economies such as U.S.; China, Japan and Germany as having important global and regional
impacts in the world economy.

7.3 U.S. house price changes

It is well established that house price changes in the U.S. are governed by common national and
regional factors (see e.g. Holly, Pesaran, and Yamagata, 2010; Bailey, Holly, and Pesaran, 2016),
and it is of interest to investigate if any of these common factors are due to the dominance of
particular states amongst the 48 mainland states of the U.S.. To this end we consider state-
level quarterly data on real house prices over the 1975Q1-2014Q4 period (T = 160).!® In our
analysis we use the rate of change of real house prices, after seasonal adjustment, with nominal
house prices deflated by the state-level consumer price indices.

Table 9: Estimated U.S. states with pervasive housing market

Approach: SMT—o? PS BM BM (standardized)
Pmaz 2 3 4,5,6 51
Number of per- 1 2 0 2 4 6
vasive units:
Identities: New York Kentucky New Hampshire North Carolina Connecticut
New York Nevada Maryland New Hampshire
Virginia Massachusetts
Connecticut Maryland
Virginia

Rhode Island

t: This value minimizes the ICpo criterion of Bai and Ng (2002) for selecting the number of common factors. Maximum number
of factors is set to 10.

Notes: Data taken from Freddie Mac House Price Indexes and Yang (2018).

To investigate whether house price changes in any of 48 mainland U.S. states could be
regarded as pervasive or pervasive for the rest of the states, as in the previous applications,
we implement SMT—o? thresholding with p.. = {2,3,4,5,6}. The PS and BM methods are
applied as before. The results are summarized in Table 9. As can be seen there are significant
differences in the outcomes depending on the method used. In the case of SMT—o? thresholding
New York is identified as pervasive when the maximum number of common factors is set to 2
and 3. No pervasive unit is found for p,,.. € {4, 5,6}, and Kentucky is also selected as pervasive
when p,q. = 3, which could be false discovery. The BM procedure identifies many more states
as pervasive with no clear geographical patterns. Without standardization, BM selects North
Carolina, Maryland, Virginia and Connecticut as pervasive, whilst with standardization three
additional states are selected as pervasive, namely New Hampshire, Massachusetts and Rhode
Island. Connecticut is not selected when we use BM (standardized). We take these results
as weak evidence for the influential role of the north-eastern part of the United States with
New York being the most plausible candidate. By contrast, PS detects two pervasive units in
two opposite corners of the U.S., namely New Hampshire and Nevada, thus providing a less
coherent picture compared to the other two approaches.

18House price data is taken from Freddie Mac House Price Indexes (http://www.freddiemac.com/research/
indices/house-price-index.html). State-level consumer price indexes were taken from Yang (2018) who
updated a previously constructed dataset of Bailey, Holly, and Pesaran (2016).
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8 Concluding remarks

Recent developments in network and panel literature have emphasized the importance of some
key units for interdependencies among economic agents. For example, financial networks can
be resilient with no units playing an unduly important (i.e. ’systemic’) role while others may
have pervasive units that need close monitoring. There is a small literature on how to detect
such units but all existing methods are either not rigorously analyzed or have drawbacks such
as assuming, rather that ascertaining, the presence of at least one pervasive unit, or considering
datasets with a relatively small number of cross-section units.

We contribute to this literature by proposing a new thresholding method which is rigorously
developed using theory on large factor models as well as recent developments on multiple testing.
It has good small sample properties and allows for the presence of no pervasive units while being
able to detect weakly influential cross-section entities. Furthermore, our method is versatile in
that it can be applied for a wider combination of cross-sectional and time sample dimensions
and that it is able to handle the presence of external common factors.
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Appendix

This appendix is in two parts. Part A provides the proofs of the main results, whilst Part
B states and proves a number of auxiliary lemmas needed in the main proofs.

A  Proof of main results

A.1 Proof of Theorem 1

We need to show that

lim Pr ({fD - JD} n {fND - JND}) — 1.

N, T—o0

It suffices to show that

272 log T
lim Pr (m {&gT < %}) 1,

N,T—00
and 202y log T

ylm Pr (uie,ND {afT < NT}) = 0.
bet 9 aAY,Apa; 202y log T

in = ZT7 and Cinr = ZT

Then, we need to show equivalently that

. . 2logT R
N}%IEOO Pr (ﬂz‘elp {U?T + N (U?N - 771‘2N) < OiNT}) =1,

and

. R 2logT R
P (UZEIND {UZZT t— (niy — 7iv) < CiNT}) =0.
Proceeding from (28), if i € Ip, we have N6%, = 236:1 B;j, where B;; are defined below equation
(28), and

Bij=o0,(1), forall i, and j =2,3,...,6,

as long as ‘/TN — 0. If i € Iyp then N6% = Z§=1 B;j, where, recalling (35) and (36),
N/
NaFMgv,  Vai (Fo-F) Mgv,

, an 8 T T

/ A .
_ NviMgv,;

Bi? T

It is straightforward to show that B;; = O, (V). Further, B;s = O, (ﬁ) =0,(N). A

detailed analysis of B;; and Bg is provided in Section A.2. Terms B;;, j = 1,...,6 depend on ¢
only through a; and it is assumed that sup, [|a;]|*> < C' < co. Therefore, it follows immediately
that

lim Pr (sup|B,-j| < DNT) =1, 57=12,...,6,

N, T—0 i
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for any sequence Dy bounded away from zero. Further, we need to show that

lim Pr (miEIND {|Bl7 -+ Bzg| > CiNT}) = 1, (52)
N, T—oc0

and it will be sufficient (assuming NCi;nr = 0 (min(x/ﬁ ,T )“)) to show that

i, 3 Pr (18] <min(V/R.7)7) =0
1€IND

and
lim Pr <|Bi8\ > min(V/'N, T)“) =0,

N, T—oo
i€IND

for some 0 < a < 1. This result follows straightforwardly by noting from a direct application
of Lemma A7 of Chudik, Kapetanios, and Pesaran (2018) that

Pr (|[viMpv; — Tol. | > TNCnr) < exp (~CTN?CRy) = exp [-CTnjy (log T)Z} ,

for some C' > 0. It is easily seen that N exp (—CTn}y (log T)Q) = o(1), noting that sup; (n}y) >
0. A similar result obtains for Pr (|viMgav; — viMgv;| > TNCyr), along the lines of our anal-
ysis below for 7;y starting with (55).

To complete the proof it now suffices to show that

lim Pr(Niz1o,.. v {|Ba| < NCinr}) =1, (53)
N, T—oc0
and
leiirliloo Pr (ﬂz’:1,2 ..... N {‘U?N - 7712]\{‘ < 771'2N}) =1, (54)

or limy 7,00 Pr (sup; |2y — N2y] < C) = 1,for some finite C' > 0, since n?y is uniformly bounded
away from zero and infinity. (53) follows from auxiliary Lemmas 3-6.
Consider now (54), and note that by equations (40) and (45), we have

L AN, A, AA'S,Aa
N

2 _p2 = — 55
nin Nin N ( )

Then,
77ng - ﬁ?N‘ <

a; A, Ap (a; — &)
N

a;A{) <iv — Ev) Aoai a;A{)EU (A — A()) a;
+ O

C
1 N N 9

Cy

= Aj + Aip + Ais,

where A;s and A;3 depend on ¢ only via a;. By the boundedness of a;, auxiliary Lemmas 3-6,
and Theorem 1 of Bailey, Pesaran, and Smith (2019), A;» = 0, (1) and A;3 = 0,(1). Hence

lim Pr (sup Ap < C’) =1, and lim Pr (sup Az < C’> =1

N, T—oc0 N, T—0c0
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Now consider A;1, and note that each element of N~'a/A{3X,A, is uniformly bounded. There-
fore, it suffices to show that limy 7, Pr (sup; ||a; — &;|| < C') = 1.We have

1 < 1«
fli: ?;ftvﬁ"’_T;xit (ft—ft> .

So we need to show that

T
Z fivi

t=1

< TC’) —1, (56)

lim P
i P <81:P

lim Pr

su
N, T—oc0 p

Z it (ft - ft)

(56) follows easily. We focus on (57). For example, by (A1) of Bai (2003) we note that

<TC

— fiu = Zf]l%t—i- Zf]lClt+ ngl%zt—i- nglflt, (58)

1N _ -
where vy = v = N ! Zi:l E(vyvg), G = N 1V2Vt — ", 2ar = N 1f{A6Vt, and & = . So
we need to show the following (C' changes from instance to instance).

_ . . -
. 1 ;
N}:Pgoo Pr |sup Z Tit (T Z jmlt> <TC| =1, (59)

T T 7
. 1 ;
N,lil“riloo Pr |sup E Tit (T E flClt) <TC| =1, (60)

and

lim Pr [sup

N, T—rc0 i

T 1 T
int (T Z fjl%lt>

t=1

We proceed in turn.

T
i gLV
t=1 =1

1 T T
T Z Z -fitfjl%t

LI )
TZZ% (fjl - fjl) Vit

> TC) = Ay + A

>TC

g
)

N =
B
=

< Pr |sup

>TC| +
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We have, for some 0 < a < 1,

T ZZ$” (f]l f]l) Vit

t=1 =1

A, =Pr <sup

> TC)

1 | min(NT)® T [} 2)12 1 T T o]Y?
b ) T [T > <sz — sz> } [T D1 D %t]
1/2
Supl [mln (N, T)™ Zt . Zti| > C
T 1/2 - 1/2
1 | min( N T)* 2 1
ol 1 z( )| [F sefs
=1 t=1 [=1

But using Theorem 1 in Bai and Ng (2002),

oin (7127, ik i (sz - sz>2

=1

1
T1/2

and using Lemma 2 to show

1/2
min (N, 7)™ < 9 B
Pr su;p (T;xn >C| =o0(l).
1
>C>.
t=1 I=1
Pr(T— >C’>:0(1),

12 Z Z £ fine
=1 =1
! Z ( Z fﬂ%t)

Hence, it follows that A;;; = o(1). Next

A
= Z >zt
=1 1=t

A
T2 DO vk

Ajg; = Pr (SQP

(sup

T T
Z Z tfgl%t
t=1 =1

>0)

We have

Pr [sup |=

i =1

By the independence of fj; and vy and the martingale difference (m.d.) property of vy,
<% Zszl fﬂ'ylt> vy is also m.d., and by the martingale difference exponential inequality of
Lemma A3 of Chudik, Kapetanios, and Pesaran (2018),

1 < 1 <
T Z Vit (T Z fjl’Ylt)
t=1 =1
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Next, for (60),

T T T T
1 A 1 A
- [Sl;}p S (iZflgt) 7| <o fsup | LSS (- 1) 6 > 70| +
t=1 =1 t=1 1=1
A
Pr <31}P T Z sz‘tflelt > TC) = Ao + Ao
! t=1 I=1
But
| LT
Aoy =Pr [SUP T2 Zzﬂcn (fjl - fjl) G| > C
=1 =1
T Z1/2 o 1/2
min ( ,T )" A 2 min ( N )"
Pr Z <fjl - fjl> Sup Z sztglt >C o <
L I=1 ] ¢ t=1 I=1
min ( N ) T 2] s
Pr Z <fjl — fjl> >C >+
L =1 i

o}.

As before

Then,

e i2<u<c)+

T
t=1 =1
T

Pr [sup (Zl’ th> < C'min (N, T)*
i t

1

But since 723" S0 ¢t = 0,(1), then Pr <T72 S Y G > O)

Lemma 2 we obtain

T
Pr [sup (% Zx?t> > C'min (N, T)**| = o(1).
‘ =1

A very similar analysis can be applied to (61), proving the required result.
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A.2 Analyzing terms B;; and B;s for non pervasive units

We consider the terms B;; and Bg, defined in (35) and (36), and wish to show that B;s =
0p (Bi7). We note that

By — NviMgv; _ N (ngFvi) N NV, (M — Mp) v;

T T T

and since T~ 'ViMpv; = O,(1), so clearly B;; = O, (N). Consider now B;s, and note that by
expression (27),

Mg (Fo-F) Aj (Ao - A) MV (Ag-A) ppva
MgFo = N * N TN -

Hence
N
VgMFV <A0 - A) a; B ngFVAOai

N N
_ Bisi | Bisa  DBiss

N N N’

We examine Bigl, Bigg and Bz’83- For Bigl we have

V;MFFOaZ' =

< Ilvill IMg | |[Fo—B|| | AG (A0~ A) | lail
Recall that by Assumption 2, ||a;|| = O, (1), whereas results (A) and (E) yield
~ T
HF“_FH ~0, VT ,
F min (N, T)

and

. N
Ay (a-A)| =0, ——=—.
H AN F "\ /min (N, T)
Furthermore, since My is an idempotent matrix we also have |[Mz|| = O, (1). Lastly, note that

|vill = O, (ﬁ ) holds by Assumption 3 and the fact that v; = u; for any non pervasive unit,

1. Consequently,

. “ NT
Bisi| = [vIM (F —F)A’ (A —A> =0, ([ ——).
| Bisi| = |viMg ( Fo 0\ o . Op min (N, T)
Next,
[Bisa| = [ViMV (Ao — A) ai| < |lvi]l [Mgll|[V (40— A) | llas].

Again, recall that by result (C),

) VNT
v Ao ()
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So
| Bisa| =

viMzV (Ao - A) a;

_o, (ﬂ)
min (N, T)

| Biss| = [viMgVAgai| < [|vi |

Next,

2] -

Here, result (D) yields [|[VAg||, = O, (\/ NT), and |Biss| = O, (\/NT) Overall,

1

Big = T (Bis1 + Bisa — Biss)
\/_
=% <min gV,T)) O ( min](VN,T)> O (\/N>
=0, (N).

A.3 Analysis of sequential 02 thresholding

Consider the extension to a model of the form

ry = af, + bz, fori=1,2,...,m,
xit:agft+b'zt+uit, fori:m—l—l,m—i-Q,...,N,

where z; is a known and observed vector of variables. We wish to repeat the analysis for
i — b’z but use OLS regression of x;; on z; to obtain the OLS coefficient b and construct
Ti — b’ z;. Repeating our earlier analysis without z;, we note that No O'ZT contains now a
further term that potentially dominates other previously analyzed terms. This term is given

N(b=b)'z'Z(b-b
py NER)Z5(b0)

we consider (f) — b> 7'7 (b — b). We simplify the analysis by using a scalar z;. We wish to

. A possibility is to modify N2, and consider min(N,T)5% instead. So

bound Pr [(f) — b), 7'7 (f) — b) > C’T} We have

» "o (1 D=1 AtVit 2
_ — = <
Pr[(b b)ZZ(b b>>CT} Pr <Z 5 ) Yozsor <
t=1~t t=1
Pr Zt 1“0 ZZ > Cr
Zt 1Zt t=1 t

Using our derivations in the previous sections of the appendix, we have

ST i)
Pr (%) E 22| > Cr §Pr<
Zt:lzt -1

T

2 2
§ 2t — 0,

t=1

1
Pr| |—
(\/Ttl

t

> C/CT> +

T
g 2t Ut

> Cy/ 2) . (62)
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The right hand side of (62) can be bounded using a martingale difference exponential inequality,
as before, thus providing justification for a criterion of the following form. Select unit i to be
pervasive if

272 log T
5§T§%,1fT2N

2 262 logT

o < B LifT < N,

2
A2 1 T ) /
where 67, = 7>, (xzt —b zt) :

A.4 Analysis of the t-type statistic in Algorithm 3

Recall from Section 3 that the model is given by

Xat = Aphy + Aygy, (63)
Xyt = BaXar + Bgge + 1y, (64)
fort =1,2,...,T, where x, and x;; are m x 1 and n x 1 vectors of observations at time ¢ on the

pervasive and non-pervasive units, respectively. For simplicity, let u; ~ iidN (0,02). Assume
we want to apply the MT hurdle to an element of x, or x;, denoted by z,. The auxiliary
regressions considered here are

sz‘t:V;Zt‘f')\ift"r‘Uz‘t, t=1,2,...,T,

for each i« = 1,2,..., N where ft denotes other variables included in the regression. This
amounts to collecting both estimated factors f't* and previously selected pervasive units x}, ,
as specified in equation (47), into a single vector and this vector ft, which should not be
confounded with the factor estimate f, in Sections 4-5 . In the first instance, we will not specify

how factors are estimated for extra generality. In vector form, we can write the model as
x; =z, + FX +v;

or
Mgx; = Mgpzy; + Mgv;

PP IS e A
where Mz =1p — Pp and Py = F (F/F> F'. The OLS estimator of the slope coefficient
v} is given by
S (T_lz’l\/II;ﬂz)_1 T2’ Mpx;, (65)

and we are interested in finding the limit expression of both terms on the right-hand side. Both
numerator and denominator are of the form T7'z'Mps = Tz’ (Ir — Pz) s for some variable
s. We consider two cases: The case where z is an element of x,; and the case where it is an
element of x;;. In both cases we assume that ft spans (hy, g;) asymptotically, i.e. that there
exists some matrix C' such that

phm HCft — (ht, gt)

‘:0
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We start by considering the case where z is pervasive. In that case there exists H such that
z = FH where plim F' = F'.
We have

T2 (Ir —Pg)s=T"'2 Iy —Pp)s—T7'2 (Ir — Pz)s
=T'2 (Pr—Ppz)s

:A1+A2—|—A3.

Let Tz (F—ﬁ’ = O, (c1,n,7) where ¢; yr — 0 and depends on the factor estimation method.
Further assuming that F's = O,(T"), we obtain

A =T 7 <F—F> (F'F) ' F's=0,(cinr)
Similarly,
Ay =T F (F ) (F-F)'s=0,(conn).
The order in probability of A, differs slightly since this expression is a function of F (F — F) =
F <F - F) - (F - F)l (F - F) Let T~ (F - F)l (F - F) — 0, (can). More specifi-

cally, we have
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Note that by Lemma Al of Bai and Ng (2006), we have that for PC factor estimation
T2 (F~F) = 0, (min (N, 7))
and .
7! (F . F) (F . F) = 0, (min (N, 7)) ,
so that for this factor estimator ¢; yr = ca y 7 = min (N, T)_l. It follows that both 7'z M px;
and T~ '2'Mpx; are O, (min (N, 7)), and using (65) we have 4%, = O, (1).

— —1/2 —
Next consider t;, = [Var ('Ay;;)} 4% where Var (5) = (2Mpz) ' T~' Y1, 92, and hence

T ~1/2

t=1

It is also easily seen that 77132, 02 = O, (1), and

T7'ZMzz = O, (min (N, 7)), T7'2Mzpx; = O, (min (N,T)7") .

So overall t;, = O, (min (N, T)/? T1/2>, implying that a standard t-statistic to test the sta-
tistical significance of 77 need not diverge if z; is a pervasive unit.
Now consider an alternative simplified ¢-type statistic of the form

. T -1
* Vi _ / 1/2 —1 A2 / ~ -1 .
t, = —\/m = (z'z) <T ;:1 vit> (z'Mpz)  z’Mgpx;
=0y (TI/Q)

We therefore note that, unlike the standard t statistic which does not necessarily diverge if z

is pervasive, t7, does diverge at the usual rate.

Under the case where the z is not pervasive and assuming that pp,.. is large enough to span
the true factors, it is obvious that t;, = O, (1) and t;, = O, (1). Using arguments similar to the
rest of the paper (consider, e.g., the proofs of (59)-(61) and Lemma 2) we can further show that,
using standard multiple testing critical values cxy = O (In(N)"/?), we can make 1 —Pr (£}, > cy)
exponentially small if z denotes a pervasive unit and Pr(t], > cy) exponentially small if z
denotes a non-pervasive unit.

B Auxiliary Lemmas

This section provides statements and proofs of the lemmas used in the paper. First we provide
a lemma handling the remainder terms of NG%.. We have

Lemma 1 Let i denote a pervasive unit, Assumptions 1-4 hold and —”%V — 0. Then,
alAgyV' Mz VAja; 1 VN
N&2, = & E "+ 0, — )|+ O, | 5
7ir NT O (5NT) O (f% ’

where 6%, = min(N, T).
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Proof. Since unit ¢ is pervasive then using (28) we note that

AV’M VAoa;
N2, = 220 08 ZB”,

where B;; for j =2,3,...,6 are given by (30)-(34) which we reproduce here for convenience

a AL V' MV <A0 - A) a;

Bi2 =2 NT )
BiS =2 NT s
al(Ao— A) VMV (A, - A)

Bi4 == NT 5

! (AO _ A) VM, <F0 _ F) Al (Ao _ A) a;
Bi5 == 2 NT )

/ 2\ =\’ . T / A )
g™ (AO - A) Aq (FO - F) M, (FO F) A <A0 A) a

NT

First, note that
2 N
1Bzl < = llall” AR V[ Mg ||V (Ao — A) |
NT

But |[Mg|| = 1, since Mg is an idempotent matrix. Furthermore, sup; [la;||* < C, by Assump-
tion 2. Together with (C) and (D) of Proposition 1, these two results imply

Lo, (VNT) 0, <@> -0, (L>

B;
1Ball = 57 . -

Similarly, using (A), (D) and (E) of Proposition 1,

1Bisll < 77 ||A’V’||

7o~ 4340 - 4)]

- %op (VAT) o, (%) O (%)

VN
(m)

= Gy (o ) (1),

2
6NT

Next,
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follows from (C). Using this latter result, as well as (A) and (E), we also obtain

01 = g ¥ (o= )75 [ (20 )|
-0 () (35 - ()

\/N
(m)'

C T
| Bis|| < NT HA/O (Ao - A) F

1 N2 T N
= Nt (%) r (%) =0 (%) ’

by the same intermediate results. Summarizing the order results above and noting that */—TN — 0,

we have
alALV'M; VAa; 1 VN
N6 0, 0,
Oir = NT * <5NT ) * ( 20 ) ’

Finally,

2

proving the required result. m

Lemma 2 Let Assumptions 1-4 hold. Then,

T
1 .
Pr [sup (T E :L‘ft> > C’] =o(1), j=1,2,3,4.
‘ t=1

Proof. We will prove the case for j = 4 only. The cases for j = 1,2, 3 follow straightforwardly.
We have
Ty = afy + vy = i + vit,

So

5
xh = oy + Apivi + 60507 + dpuvl + v = Ag.

So




where m; > 0, and Z?Zl m; = 1. We examine each B; in turn. We have that for sufficiently
large finite constant C, there exists some constant C'; such that

r T
1
sup (T ZAm> > mC’] < Pr |sup Z (alf,)*

t=1 ¢ t=1

Pr

N[ =

> mC']

T
1
=pe | (sup ") | 8| > me
. T
< Pr Z 1E1* = E (IEY)]] > TmiCy
t=1

However, since by Assumption 1, %Zthl [HftH4 —F (Hft]|4)] =0, (1),

|- E (||ft||4) >TmCy | =0(1),

for any finite Cy > 0. For By — B; it is sufficient to note that Aj;, j = 2,...,5 are martingale
difference processes since ¢;; and v; are independent and vft - F (vft), for j = 1,2,3,4 are
martingale difference processes by the serial independence of €; (see Assumption 3). Therefore,
by the martingale difference exponential inequality Lemma A3 of Chudik, Kapetanios, and
Pesaran (2018), we have that for j = 1,...,4, and for a sufficiently large finite constant, C,
there exist some constants C; and Cs such that

T
1
Pr [sup (f Z A,-jt) > m;C
‘ =1

proving the result. m

Z Azyt z]t)

> 7m;Cy| <exp(—CT),

< Pr [sup

The rest of the lemmas in this section prove the results of Proposition 1 in the main text.
The five results A-E are analyzed in separate lemmas due to the length of the proofs. It is also
important to note that the required assumptions for the subsequent lemmas are considerably
weaker than those needed for comsistency of the o? thresholding procedure. The minimal
conditions needed, which are satisfied by Assumptions 1-4 in the main text, as noted in Remark
2, are as follows:

1. E|f||* < C < oo, T-' S £if! % %} for some m x m positive definite matrix 3. Ag
has bounded elements. Further ||[N"'A{A, — D|| — 0, as N — oo, where D is a positive
definite matrix.

2. E(vy) =0, Elvy|® < C where v; = (v14, ..., vn:) The variance of v; is denoted by 3,. f,
and v; are independent for all s, t.

3. For 7, ;+s = E(vivjs) the following hold

o (NT)™ 23:1 Zf:l | Zfil Tiits| < C.
° 21T=1 [1/N Zf\il Tiisi| < C for all s.
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1N «N
N7 Zj:l |Ti s8] < C.

(NT) ZST:1 Zthl Zi\il Z;Vﬂ T, < C.

For every (t,s), E|(N)" Y2 N (vigviy — Tias4)|* < C.

For each t, \/Lﬁ Zfil a;v;; —% N (0,T;) where T'; = limpy o0 ZZ]\LI Z;VZI E (aia;vitvjt).

The above list is essentially the set of assumptions in Bai (2003). Analogous to the definition
in Section A.1, let vy = Vv st = % zlj\il Tiit.s-

Lemma 3 Under Assumptions 1—4

V(A—AO) JT JT 1
T -0 (i) <o () o ()

F
Proof.
We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that
1 o I~ /a
a, —a;, = T ; fov; + T tzl Tt <ft — ft> ) (66)
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We have

o
_
&
+ &,
a Ry
= <
e _
| [ VRS
S — o +
-3 2 _ Y
S $s ~ T
. 3 & s
8 %
& ow - -3
AT S S
S -3 o
W > J
i SRS Y e Y
8 S} P
~ 0 ,’
&b w o S ®
ARSATEIATAL
-z —E I
 N— —— N—
R R R a R
IS IS S S
NN ERINERI:
— — — —
&~ ..F TZ..FT 1_L_T ..P
N [a\}

fs - fs

A~

2
s

1 T
732"

2
it

-2
=)
X
8
—
SAL
s
A
1_2
~
xR

We have

Also
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Next, we have

. T . 2
- ok (o))

ikazyxi@@smU]

Jj=1 t=1 i=1
1 T N T 9
s s Y3 (o (- ) )
t=1 i=1 s=1

But

1 2.2 (7 2 1 oo 2
(TZ”“) Lis <fjs_fjs) :TNQZZZ“ (f]S fjs) ,

s=1 "1s

A; in (67) of Lemma 5,

where z;; = (% ZTf v»2> x7,. Note that sup;; ' (2;) < co. Then, by a similar analysis to term

C3 =0, (N"'min(N,T)7").

Further,
1 T N
Ca= N2 Z Zvi T2 Z Z |TisTis | — 5, fo, — £ F)
t=1 i=1 s=1 & sts!
o\ 1/2
1 T N (’172 ZS:l Zs/,‘g#s/ (xisxis’) >
SN2 szi 9 o\ 1/2
N2 : 1 T T f' £
t=1i=1 Ezs=1 Zs/,s;és/ s — 1s P / »
: T T 2 1/2
]_ T N (% ZS:I Zs’jg;&s’ (‘risx’is/) )
= N2 Z Z Ui . 2 ) 9 1/2
t=1 =1 {% ZZZI |: fS - fs F (% Z;,s;és/ fS - fs F):| }
1
< | = fs
N (T =1 )
| I L T 1/2
X3 | (3 )
t=1 i=1 =1 s/ ,s#s’
But



and therefore
T T

R [Ehs

s=1 s’ s57#

1/2
(xisxis’)Z) - Op (TNil) .
Further,

TR
E<?Zf

—f; i) = O [min(N,T)7],

and overall we have Cy = O, <L> Finally,

N min(N,T)

1 T N 1 T T
mZZ@2ZZw%(~Q]

t=1 i=1 =1 s'=1

T

[;2222@( Z f)] [ wa,(sf— )]

t=1 i=1

But using Lemma A.1 of Bai (2003) and sup, , E (3,) < oo,

=0, [min(N, T)_l} ,

and
| TN 1z
mizyﬁgz%@=@www
t=1 i=1 s=1
So, we have

AN

~ vl zigVisk, (£s —£4 ) | = O, [TN "' min(N,T)"]

N =S ! s=1 3221 ( > "

and hence
V(A-A
N N min(N, T N min(N, T
F
u

Lemma 4 Under Assumptions 1—4,

THF:op(m)'

Proof.
Since
1

2 ; f2
T t— 1t

AT
ST

F-Fy

Y

then the required result follows immediately from Theorem 1 of Bai and Ng (2002). m
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Lemma 5 Under Assumptions 1—4,

V' (F-Fo) :Op<@>+op(i)+0p(ﬂ4).

T

Proof. We have that

V’(ﬁ—Fo) ? N m 1 T 2 N ] T 2
S e 22| (XA S e ()]
g =1 a=l t=1 i=1 t=1
But,
N 4 A S T 5
Z Tzvit (fjt fjt) = —zzzvi (f]t_f]t> +
i=1 t=1 i=1 t=1
2

N T T
T2 Z Z Zvlt”w <th - fjt) (fjs - fjs) = A1 + As. (67)

i=1 t=1 s=1

By equation (58) we can write

T T
A 1 A
—fie = nyﬂlt+ nglflt+ ;fjl%lt+flz_1:fjl€lt7

where ¢y = N™'jv, — v, 20 = N/ A}vy, and &, = ;. We have

SEfat s T T () -
T2 et it gt — Jjt —T L i T ]l/}/lt
4 L& 1 )
ﬁzzvi folelt) +
i=1 t=1 I
N T

3
]
™
S

N =
M'ﬂ
§>

~__
_|_

~
Il
—
-
I
—_
-

I
[M] =
N| =

2
Vit \ Z fjl&t)

1 t=1 =1

=An + A+ Az + Awge

(2

Now,

1 N T T R 2 ] T ) ) N T
:ﬁZZvZ <ijl%t> < (?Z ﬁ) ﬁzzvi (Zﬁ) '
i=1 t=1 =1 =1 =1

But 7' Y27, 0,(1), and 3°° 42 < C. Hence

>3 (o) <oy

i=1 t=1 i=1 t=1

Jl:
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So

Next

1 T . 1 T T 1 N
(3) (3 200°) 5 20 (5 3008 i
1 < lllT 4 (1Y
= (Tzszl> (TZHQHQ) = szi
=1 ;

Similarly for Ay4. So, overall

A =0, (NT?)+0,(T") =0, (ﬁm) :

Next we consider A, and note that

o4



I\Mﬂ

(fjt - fjt) <fjs - fjs> = ( Fione + = Z FiGe + = Z fivsae + = Z f;zﬁn)
T
( Z s + 4 Z finGis + Z fizas + % Z fjlfls)
1 = : T1=1T N =1
— Z Z - Fou Vit Yus + T2 Z Z JitfjuvieCus

T
=1 =1 u=1
9 r T
Ts Z Z fitfjuvestus + = T2 Z Z f;zfgu%tgus‘i‘
11T1;A =1 u=1 2TTAA
75 D D FifnuuGus + Z Z FufuSirtus + 5 D Y FitfiuCinbust
1 l;lu;lAA 2llul 1lTu; N
ﬁ Z Z lf]u%lt%us T2 Z Z f]lf]u%ltfus ﬁ Z Z fjlfjugltgus-
=1 u=1 =1 u=1 =1 u=1
Therefore
9 N T T 10
Ay = T2 Z Z sztvzs (f]t fjt) (fjs fjs) = ZA%.
=1 t=1 s=1 i=1

Denoting equality in order of probability by A ~ B, we proceed term by term noting that

Aoz ~ Aoy, Asg ~ Agr and Asg ~ Asig. So the terms to consider are Aoy, Ago, Aoz, Ass, Asg,
Agg and Agg. Starting with Ay, we have

9 N T T T T
A21 - ﬁ Z Z Z Vit Vis (Z Z lfju’yltw/us)
) Z;l t;l 5;1 N l; u;l
= ﬁ Z Z Z fjlfju <Z Z V; tvis%t%s)
i=1 =1 u=1 t=1 s=1

1/2

o 9 1/2
2 & (£EL S0 ()
< =
{Tli*‘ Zszl Zu 1 (Zt 1 Zs 1Ultvzs'7lt'7us>2:|

97 1/2

N 1 T T T T 1 r
AR B (X ) | (5350)-
- _ _ u=1

But, due to summability of ~;,

2
UitvisVltVus> S T O

~
—_
w

—
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Noting further that, again due to summability of v;, the double sum over [ and u will only
have terms bounded away from zero if [ and u are close we obtain

T

% Z Z <Z Z Uitvis/}/lt’yus) = O (1) )

=1 u=1 = =

and hence Ay; = O, (NT~?). Consider now

9 N T T T
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Further, due to summability of v;; the double sum over [ and ¢ will only have terms bounded
away from zero if [ and ¢ are close so

E 13 Z Z (Z Z Uzt”stltCus) =0 (N_l) ) (68)

and as a result Ay = O, (N'/?*T~%/2). Next, and similarly to the previous terms

i=1 t=1 s=1 =1 u=1
5 N 1 T T T 2] 1/2 A
[l iyy (zzvﬁm%s) <T2ffu>,
i=1 =1 u=1 t=1 s=1 u=1

which again, by a manipulation similar to that used for (68), yields Ay3 = O, (Nl/ZT*B/Z).



Next,
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But, by absolute summability of the autocovariance of v,
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So Ay = O, (T™1). Similarly, we obtain Ass = O, (T') and Ay = O, (T 1). Collecting the
terms, we have

Ay =0, (NT?)+ 0, (NV*T73?) + 0, (T™).

Thus 5
vE-m)l (NT2) + 0, (T1) + O, (NV2T-57)

T =Up P P )

F

and hence
V, <F B FO) -0 (Nl/QT—l) + 19) (T—I/Q) + 19) (N1/4T—3/4)
T =Up D P :
F
n

Lemma 6 Under Assumptions 1—4,

N 2
A~ A .
fr "W _o(—
N p(min(N,T))7

s (a=0)l, -0 (i) o

Proof. We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that

1 1
ai_aizftzlftvit“‘ftzlxit <ft_ft>-

and
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This result can be used to obtain
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and
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noting that by Lemma A.1 of Bai (2003) and sup, sup, F (z%) < oo,
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Further,

So, overall Cy = O, (mm(N )> Finally, noting by Lemma A.1 of Bai (2003) (or can be proven
by first principles) that
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we have
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To prove (69), recall that by equation (66),

thvn+ let (f-£).

Define B = AjA,. Note that every element of B is O (N) and so every element of N7'B is
bounded. We have

=0, [min(N, T)_l} ,

| XN
:NZ:

So overall

|45 (A - a0)| = {(A ~ Ao) AjA, (A - Aoﬂ ~ 3 (& —a) B(a —a)

=1
N 1 T
< Z (szQ Z fSBfSU + Z Z f Bf s/ VisVis! )

i=1 s=1 s=1 s/ s#s’

N 1 T 9 ~ 2

”BH Z T2 Zszl vy, |[fs — ]|+ N
F | T =T " .
=1 T2 25:1 Zs’ s/ |xisxis’| fs — fs » f p

R

s=1 s'=1

1 & A
<T2 Zf;stU25> + Z (ﬁ Z Z f;st/visvisx) +
xT:

s=1 s’,s;ﬁs’
|| || < s=1 >
F
. F

s
- T T

% Zs:l Zs rry ’xlsa:ls ‘ X >
- F

':'MZ ‘ZMz

~
o

A

£, —f,

+

S

=
no
o

~ f,_f +

M- 1M

»

1 S

T

1 T
T2 Z xzs’vzsf B < fs’)]
1s'=1

s=

1

We have

61



Also
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and

|45 (& - 40)], =0, (%) |

proving the required result. m
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This online supplement contains additional theoretical, simulation and empirical results that
complement the main paper. It is composed of five sections. Section S1 gives a more detailed
description of the steps required to implement the various variants of the basic o2 thresholding
method proposed in the paper. A summary of other approaches proposed in the literature for
the detection of pervasive units is given in Section S2. The finite sample performance of the
different variants of the o2 thresholding (that are not considered in Section 6 of the paper) is
discussed in Section S3. Two additional o2 thresholding schemes, based on the difference and
the ratio of two successive ordered error variance estimates, are considered in Section S4 and
their small sample properties investigated using Monte Carlo simulations. Finally, Sections S5
and S6 report simulation and empirical results using an unmodified version of BM procedure.

S1 Variants of the basic ¢ thresholding Methods

This section provides a step by step description of the various refinements of the basic o2

thresholding advanced in Section 5 of the paper. Let x; be the T" x 1 vector of observations
on the ¢-th unit in the panel, and X = (x,,X2,...,Xy) be the 7" x N matrix of observations
on all the N units in the panel. Suppose that p < puax, Where pua. is selected a priori to be
sufficiently large. Denote by X* the 7" x r matrix containing all pervasive units that have been
identified at a given step of the two algorithms described below. Analogously, let the T" x N;
matrix X; = (Xp1;-..;Xpn,) contain observations for the Ny = N — r remaining cross-section
units that have not been identified as pervasive. Furthermore, let

M . { IT, if r = 0,

X\ Ip — XE(XEXH) XY, if r > 0.
Given the sequential nature of the two algorithms described below, the values of r, Ny, X} and
X and the dimensions of the latter two matrices change as the algorithm proceeds. Further-
more, X, and X represent an estimated partition of the data into pervasive and non-pervasive
units which is to be distinguish from the true partition X = (X,; X,).

Algorithm 4 (Sequential ¢? thresholding)

1. Setr=0.

2. Compute F = \/LNMX:;XZQ; where Q is the N X (Pmax — ) matrixz whose columns are

the orthonormal eigenvectors of X;'Mx:Xj, such that NQQ-=1 For each 1 =1,

Pmax *



compute &;, Uy and 62 to be the OLS estimator, residual and residual variance of the
regression of x;, on F, namely

a;, = (F/F> F,sz,

A ~ A ~ / * - 0/
vV, = (Uil,vig, Ce ,’UiT) = Mﬁ‘xb,i = |:IT —F <F

A _ 1/ ¥
Oip =T %, Mpxy ;.

=g
~
L
=g
[
>
o

3. Sort 6% in ascending order and denote the sorted series 0(1)T, 57( 2T &(ZN)T with 6(21.)T
being the i-th smallest value. Consider the cross-section indexves 11,1z, ..., 0, . —y COTTE-
sponding to O'(I)T, A(QQ)T,. A(mex . Compute

. aA’S A

for every j € {iy,ia,...0yp,..—r } where S, is the multiple testing estimator of ¥, by
Bailey, Pesaran, and Smith (2019), as described in Section 4.2 of the main paper. If for
all g,

277]2N logT

N

then stop the algorithm and conclude that there are m = r pervasive units whose identities
are given by the indexes of the columns in X that coincide with columns in X. Otherwise,
proceed to step 4.

~2
T >

4. Let i* = argmin; 62. Update X = (X*;xp+) and eliminate x4 from X;. Update,
r:=r+1 and Ny := Ny — 1 and return to step 2.

Algorithm 5 (Sequential-MT ¢? thresholding )

1. Setr =0.

2. Compute F = \/LNMXZXiQ, where Q is the N X (pmax — T) matriz whose columns are

the orthonormal eigenvectors of X;'Mx: Xy, such that N7IQQ = L.
compute &;, Uy and 6% to be the OLS estimator, residual and residual variance of the
regression of x;; on F, namely

For each 1 = 1,

a, = <F/F) F/sz,
A fa, 2\ "1 A
Vi = (0i1, Via, - - -, Uip)| = Mexy; = {IT —F <F/F) FI] Xy s

A _ 1/ ¥
Oip =T %, Mpxy ;.



3. Sort 6% in ascending order and denote the sorted series 6(21)T, 6(22)T, e ,6(2N)T with 5-(21')T
being the ith smallest value. Consider the cross-section indexes 1,1z, ..., %, —r COTTE-
sponding to 6(21)T, &(22):,,, . ’6(2pmax—r)T . Compute

. aA'S Aja
T]iN - N ?

for every j € {iy,ia,.. .4y, —r } where S, is the multiple testing estimator of X, by
Bailey, Pesaran, and Smith (2019), as described in Section 4.2 of the main paper. If for
all g,

52 27y log T

JT N ’

then stop the algorithm and conclude that there are m = r pervasive units whose identities
are given by the indezes of the columns in X that coincide with columns in X:. Otherwise,
proceed to step 4.

4. Leti* = argmin; 62. For each j =1,...1* — 1,i* +1,..., Ny estimate the model
* */ ok
MX;Xb,j = MX;Xb,i*’Vj + ft aj + Vi,
where £ is a Ppar — 1 — 1 vector of unobserved factors which we estimate as in step 2 but
using Mx: X3 o with Xy, i« = (Xp1; -+ -5 Xpie 15 Xpix11; - - - Xo,n ) instead of Mx: X

5. Apply individual significance tests to the N1—1 estimated slope parameters 4y, ..., Y 1, iyt - VN,
using the critical value ®~! [1 — L] with ®~1(-) denoting the inverse normal CDF,

23(N1—1)
and 7 s set to 0.01.

6. Let M denote the number of rejections among these Ny—1 tests. Iflog(M)/log(N) < 1/2,
stop and conclude that there are m = r pervasive units whose identities are given by the
indices of the columns in X that coincide with the columns of XZ. Otherwise proceed to
step 7.

7. Update X! = (X%:xp4+) and eliminate xp;« from X;. Update, r :=r+1 and Ny := Ny —1
and return to step 2.

S2 Pervasive unit detection procedures proposed in the
literature

S2.1 Brownlees and Mesters (BM) procedure

The model considered in (Brownlees and Mesters, 2018, BM in the following) has an equivalent
reformulation of our pervasive unit model, formally given by

Xta = ft, (70)
mx1
X = BXyo + g, (71)
nx1



where the covariance matrix of f; may be any positive definite matrix. Brownlees and Mesters
(2018) also allow for the presence of unobserved common factors, but we will be abstracting
from such factors to simplify the exposition.

The number of pervasive units'® and their identities are estimated from the precision matrix
(i.e. the inverse covariance matrix) of the observed data X. Formally, let

K= (T"'X'X -xx) ",

where X = (71;...;Zy), and T; = T~ Zthl 2. Additionally, let K = (Rl RN) BM
then compute &; = ||ki||, i = 1,2,..., N, where ||k;|| = 1/k/k;. These N vector norms are
then ordered in a descending manner, denoted as £(1), A2, - - ., An). The estimated number of

pervasive units is then

m = argmax &,
§=1,2,....N—1K(j+1)
and the pervasive units are determined as columns with the norms &), K(2), ..., k). Monte
Carlo simulations and empirical applications in the main paper employ a slight modification
of this procedure, also used in Section 6 of Brownlees and Mesters (2018), whereby the above
maximization problem is solved with respect to the first N/2 ratios instead of all N — 1 ratios.
Supplementary simulation results obtained without this modification are reported in Sections
S5 and S6.

BM detection method is subject to two main shortcomings. First, estimation of the precision
matrix requires 7' > N. Second, by construction the estimated number of pervasive units is
at least one. Consequently, it is impossible to use the BM procedure to investigate whether
there is in fact any pervasive unit in the panel data set under consideration. As an illustration

consider the simple factor specification
Ty = Bife + wt, (72)

where f; ~ (0,1) is the common factor, f; is the factor loading with sup |5;| < K, and u; is the

unit-specific component which we assume to be I7D (0,0%) over all i and ¢, i =1,2,... N;t =
1,2,...,T. Assuming that 02 > 0 ensures that there is no pervasive unit in this model. Let
Xt = (x1t7x2t7 s ath)/7 /6 = (/817 ﬂ?v T 7/8N> ; and u; = (ulta Uty - - 7uNt) ) and write (72) as
x¢ = Bft + uy, (73)
and note that
Cov (x;) =X = B8 + o’Iy. (74)
Then,
K:( k; ko - ky )
_ 1 56’
—»' — (0% N Ty - —— 75

where & = (01,05, ...,0x) and &; = 3;/o. Then, it is easily seen that

N2 2y 52
l? = 2 (1— L ) UYL (76)
o 1449 (1+6'9)

9Brownlees and Mesters (2018) employ the term granular shocks instead of pervasive units.
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Suppose that @' 3 = 028’6 = © (N®), with a = 1, signifying f, to be strong. Then, ||k;||* =

!
ﬁéf(lfg,é)g, and hence, as N — oo,

kel 18
lim = = — (77)
N—oo| k|| [0s]  [5s]

and ||k;|| is maximized for the unit with the largest factor loading in absolute value.

The same result holds if we allow the variance of u; to vary over i. In such a case the
relevant measure is |3;| /o2, where 07 = V (uy), with 0 < 0? < K. Thus, the column norms of
the concentration matrix measure the relative importance of the common factors for the units
in the panel, and is not informative about the importance of the unit for the rest of the units

in the panel (network).

S2.2 Parker and Sul (PS) procedure

The pervasive leader framework of (Parker and Sul, 2016, henceforth PS) is primarily aimed at
investigating whether a time series external to the dataset at hand is one of the latent factors
driving the observed data. However, this framework can be represented in terms of the model
(70)—(71) by simply including the potential pervasive unit(s) into the dataset (see also Parker
and Sul, 2016, p.229). The pervasive leader framework also deals with approzimate pervasive
leaders which will not be considered here.

The key idea of PS is whether a known potential pervasive unit can replace one of the factor
estimates obtained from the factor model representation of the pervasive unit model. If so,
then this candidate unit is identified as pervasive.

PS assume a priori knowledge of a fixed number r of potential pervasive units, denoted as
G = (g1,82,.-.,8). Each time series in the dataset is standardized and the true number of
factors in the data is determined. In order to avoid a subjective choice, we let p,a. = #(X)
where #(X) denotes the number of factors in X minimizing the the 1C,, criterion of Bai and
Ng (2002).2° Subsequently, the factor estimates F are obtained as /T times the eigenvectors
corresponding to the p.. largest eigenvalues of N~1XX’. Now, for each potential pervasive
unit g, ¢ =1, ..., Pmaz, Parker and Sul consider the p,,q, regression models
Tit = Yi1Gee + ai,th,Z +.oo 4+ ai,pmazft,pmaz + 771(,51),

_ ; ¢ (2)
ajit - ai71ft,1 _I_ ,Y’L',Qgt,f + e + ai,pmazftypmaz + nit ’

(pmam)

T = ai,lft,l + Oéi,2ft,2 T Vipman Il Tt it )

fori =1,2,...,N. Let HY = (ﬁﬁl...,ﬁ}@) s Hma) — (ﬁ§?°),...,ﬁ§5yaz)) denote the

OLS residuals of the p,,q. regression models above. If at least one among # <ﬂ(1)> s # <ﬂ(pmaz)

is equal to zero then g, is considered as a pervasive unit.
PS suggest a further step if any of the units in the dataset is selected as pervasive. For each

20In application of the Bai-Ng selection procedure, we set the maximum number of factors to 10.
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unit x;, the authors consider the p,,,, regression models

ft,l = ng)a:lt _'_ C;%’L) ft,2 + cpmaz zftypmaz _'_ Ct Y
(2)

A~ 2) 2
ft72 = Cg,i)ft:l + C2,Z xit + Tt + prnagc,iftapmaz + Ct ’

ft o . Clp;naz ft 1 + cpmaz)f‘\’2 + + C(pmaz) _|_ Ctpmaz

Pmaz,t Lit

The coefficients of determination R? IEEEE Rf,maz?i for these P4 regression equations are ob-
tained. Having done this for every ¢ = 1,2,..., N, the R? values for the first model above,
denoted by R1 Ly ,Ri ~» are ordered in a descending manner. The units with the coefficient
of determination Ri(l), e ,Ri(r*) are chosen as r* potential pervasive units. This procedure
is repeated for the remaining p,,.. — 1 models as set out above, providing in total 7 = r*p,,4z
potential pervasive units (duplicates included). A guideline for the choice of 7* is “[...] around
10% of the size of N.” (Parker and Sul, 2016, p.232).

The PS procedure is subject to two limitations. First, Parker and Sul (2016, p.230) ac-
knowledge that treating all units in the sample as potential pervasive units may lead to a
non-negligible probability of making a Type I error. However, this problem is not solved by
restricting the number of potential pervasive units to 10% of the number of cross-sections. Sec-
ond, the performance of the procedure depends crucially on the choice of m, the number of
factors, and how well it is estimated. If m is underestimated not all true pervasive units may
be chosen. If it is overestimated, non-pervasive units may falsely be identified as pervasive.

S3 Finite sample performance of alternative o’ thresh-
olding methods

As discussed in Section 5 of the paper, it is possible to apply certain refinements to the o?
thresholding method in order to improve its finite sample properties. Our preference for the
sequential-MT o2 thresholding is based on its finite sample performance relative to a number of
other modified versions of the basic method. This section provides simulation results to support
our choice.

The o2 thresholding variations considered are as follows:

1. o? thresholding, as described by Algorithm 1 in the paper.
2. S—o? thresholding, as described by Algorithm 4 given above, or Algorithm 2 in the paper.

3. Sequential-MT o2 thresholding with an alternative threshold. This method coincides with
Algorithm 5 except for the application of the threshold specified in Section A.3 for the o
thresholding step.

We conduct simulation experiments identical to those in Section 6 of the paper, and report
the performance of o2 thresholding, as discussed in Section 4.2, as well as S—o? thresholding,
and the SMT—o? thresholding with an alternative scaling, as set out above. As before, our
performance measures are (a) the percent probability of correctly determining only the true
pervasive units, and (b) the average number of units falsely selected as pervasive.

6



Tables S3.1 and S3.2 report results for the case where there is no pervasive unit. The
performance of the four measures considered differs only with respect to whether they involve a
multiple testing hurdle or not. Algorithms that include this extra step perform better, especially
when the DGP includes an external factor. This observation suggests that the multiple testing
hurdle makes a noticeable contribution to minimizing the probability of falsely discovering a
pervasive unit.

Noticeable differences between all four algorithms begin to emerge when the number of
pervasive units is at least equal to one. As reported in Table S3.3, the performance of o2
thresholding declines considerably when the total number of factors, both pervasive units and
external factors, is larger than one. This problem is somewhat mitigated if one considers S—o?
thresholding. However, this method often fails to correctly detect the true pervasive units when
T > N , and there are external factors affecting the observations. The multiple testing hurdle in
SMT —o? thresholding addresses this problem and leads to substantial performance gains, thus
making it our method of choice. Finally, considering the alternative scaling of the threshold
value (variant 3 above) leads to ambiguous results: improved performance is obtained when N
is much larger than 7", in the case where there are two pervasive units and at least one external
factor. However, the opposite result is obtained if N is only twice as large as T". For this reason,
we discard the alternative thresholding even though it certainly has benefits in samples where
N — T is sufficiently large.

Summary results for the number of units falsely detected as pervasive are reported in Table
S3.4, and suggest that all the four methods generally perform well in this respect and do not
severely overestimate the number of pervasive units. However, there is some evidence of false
discovery when ky = 2, and N and T are relatively small.

Qualitatively similar results are obtained when we consider Monte Carlo designs with weakly
pervasive units. Table S3.5 summarizes the results when o = 0.8. As can be seen these
results are comparable to those reported in S3.3 for a = 1, the main difference being that
with weakly pervasive units the probability of correctly determining the true pervasive units is
lower. Additionally, all 0 thresholding versions suffer from performance losses if N is too large
relative to T'. This is to be expected since the fraction of cross section units that are unaffected
by pervasive units increases in N. Finally, Table S3.6 reports the empirical frequency of false
discoveries in the case of weakly pervasive units. Once again the results are similar to those
obtained for a = 1.



Table S3.1: Empirical frequency of correctly identifying the absence of a pervasive unit

o? thresholding S—o?
ko=0 ko =0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 96.1 93.5 93.6 926 50 | 96.1 93.5 93.6 92.6
100 | 99.0 98.1 96.3 96.6 100 | 99.0 98.1 96.3 96.6
200 | 99.8 99.6 99.5 989 200 | 99.8 99.6 99.5 98.9
500 | 100 100 100 100 500 | 100 100 100 100
k=1 k=1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 60.9 47.8 41.5 404 50 | 60.9 47.8 41.5 40.4
100 | 89.8 80.8 71.4 68.9 100 | 89.8 80.8 T71.4 68.9
200 | 99.3 98.6 97.6 97.0 200 | 99.3 98.6 976 97.0
500 | 100 100 100 99.9 500 | 100 100 100 99.9
ko =2 ko =2
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 35.1 24.0 17.1 158 50 | 35.1 24.0 17.1 15.8
100 | 77.3 60.4 43.9 39.7 100 | 77.3 60.4 43.9 39.7
200 | 98.3 95.7 90.9 89.3 200 | 98.3 95.7 909 89.3
500 | 100 100 100 99.8 500 | 100 100 100 99.8
SMT o2 SMT—¢?, alternative scaling
ko=0 ko =0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 100 100 100 100 50 | 100 100 100 100
100 | 100 100 100 100 100 | 100 100 100 100
200 | 100 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100
ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 88.4 86.4 827 80.3 50 | 884 86.4 827 80.3
100 | 94.1 923 90.7 88.9 100 | 94.1  92.3 90.7 88.9
200 | 99.8 99.2 994 99.2 200 [ 99.8 99.2 994 99.2
500 | 100 100 100 100 500 | 100 100 100 100
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 61.6 559 477 443 50 | 61.6 55.9 47.7 443
100 | 84.0 745 64.2 60.9 100 | 84.0 74.5 64.2 60.9
200 | 98.6 97.7 94.2 94.1 200 | 98.6 97.7 94.2 94.1
500 | 100 100 100 99.9 500 | 100 100 100 99.9

Notes: o2 thresholding is implemented using Algorithm 1 in the main article, with
Pmaxz = mo + ko + 1, where mg is the true number of pervasive units (if any) and
ko is the number of external factors. S—o? and SMT—o? refer to Sequential o2
thresholding and Sequential-MT o2 thresholding, as implemented using Algorithms
2 and 3 in the main article, respectively. Threshold in the o2 thresholding step of all
three algorithms is given by &z'QT < 27?7;2NN_1 log(T'). The threshold chosen for N > T
in the alternative version of SMT—o? is given by 6%1" < Q&ﬁiT*1 log(T). See Section
A.3 for further details.



Table S3.2: Average number of non-pervasive units falsely selected as pervasive (mg

o2 thresholding S—o?

ko=0 ko=0
NA\T | 60 110 210 250 N\T | 60 110 210 250
50 0 01 01 01 50 0 01 01 0.1
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko=1 k=1
NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 | 04 06 0.7 0.7 50 1 0.5 07 08 038
100 | 0.1 02 03 0.3 100 {01 02 03 04
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko =2 ko=2
NA\T | 60 110 210 250 NA\T | 60 110 210 250
50109 1.1 14 14 50109 1.2 15 15
100 | 0.2 0.5 0.7 0.8 100 | 0.3 05 0.8 0.9
200 0 0 01 01 200 0 0 01 01
500 0 0 0 0 500 0 0 0 0
SMT o2 SMT 02, alternative scaling

ko =0 ko=0
N\T | 60 110 210 250 NA\T | 60 110 210 250
50 0 0 0 0 50 0 0 0 0
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko=1 ko=1
NA\T | 60 110 210 250 N\T | 60 110 210 250
50101 02 02 0.2 50101 02 02 02
10001 01 01 0.1 100 | 0.1 01 01 0.1
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko =2 ko=2
NA\T | 60 110 210 250 N\T | 60 110 210 250
50 | 0.4 05 0.6 0.7 50104 05 06 0.7
100 |02 03 04 04 100 | 0.2 03 04 04
200 0 0 01 01 200 0 0 01 01
500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S3.1.
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S4 Maximum difference and maximum ratio threshold-
ing

The idea of considering the maximum difference or the maximum ratio between two ordered
statistics, has been recently suggested by Ahn and Horenstein (2013) and used by Brownlees and
Mesters (2018) in the context of detecting pervasive units, can also be applied to o2 thresholding.
Denote by 6(21)T, &(22)T’ e ,6(2N)T the ordered estimated error variances in ascending order for a
dataset with IV cross section units and 7" time periods. Then the following two simple algorithms
can be considered:

Algorithm 6 (Max o?—difference algorithm)

1. Conduct 0? thresholding using pma. estimated factors. If the estimated number of pervasive
units, denoted by m, is zero, stop and conclude that there is no pervasive unit. Otherwise,
proceed with step 2.

2. Let the estimated number of pervasive units be given by

A ~2 ~2
m = argmax (o G+)T — %‘)T) )
]:1727~~~7pmaz

and the estimated identities by the indices of the units whose estimated error variances
£ 22 ~2

Algorithm 7 (Max o?—ratio algorithm)

1. Conduct o? thresholding using pma. estimated factors. If m = 0, stop and conclude that
there is no pervasive unit. Otherwise, proceed to step 2.

2. Let the estimated number of pervasive units be given by

~2
A G+nT
m = argimax 9 5
J=1,....pmaz U(])T

and the estimated identities by the indices of the units whose estimated error variances
are 6(21)1“7 6(22)T, e ,6(2m)T.

In Table S4.1 we report the performance of the two approaches described above using the
Monte Carlo set up described in Section 6 of the paper. The case m = 0 is left out since the
probability of correctly detecting the absence of pervasive units is entirely determined by the
initial o2 thresholding step of max difference and max ratio thresholding methods. Results for
models with at least one pervasive unit show that the two algorithms, based on either the max-
imum difference or the maximum ratio, perform quite similarly to the SMT—o? thresholding.
However, the former two methods exhibit inferior performance in samples where N is small.
This comparative disadvantage is compensated by a superior performance in cases where there
are both external common factors and more than one pervasive units. However, empirical evi-
dence for the presence of at least one pervasive unit in the existing applied literature is rather
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limited.?! Furthermore, the relative advantage of max difference or max ratio thresholding
disappears when weakly pervasive units are considered. As reported in Table S4.3, SMT—o?
thresholding has a performance comparable to that of the two new algorithms considered here,
even when N is large and the number of pervasive units is larger than 1.

Tables S4.2 and S4.4 report the average numbers of falsely selected pervasive units, and
show that the max difference and max ratio thresholding procedures perform reasonably well.
But as compared to SMT—o? thresholding, the max thresholding approaches tend to show a
higher proportion of false discoveries, and overall we are led to favor SMT—o? thresholding
over the max difference and the max ratio thresholding.

2lsee e.g. Pesaran and Yang (2019) or Dungey and Volkov (2018) who find that the degree of dominance of
the most influential unit in their datasets is quite far from the value of 1 that would indicate a pervasive unit
in the sense of a factor common to all cross-section units.
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Table S4.1: Empirical frequency of correctly identifying only the true strongly pervasive units
(m>0,a=1)

Part A: mg=1

SMT -2 max o2—diff max o2—ratio
ko=0 ko=0 ko=0
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 97.7 99.9 100 100 50 | 89.9 974 99.1 994 50 | 94.6 99.2 99.8 99.8
100 | 100 100 100 100 100 | 97.9 99.5 100 100 100 | 99.7 100 100 100
200 | 100 100 100 100 200 | 99.5 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100 500 | 100 100 100 100
ko=1 ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 58.9 80.6 82.9 82.3 50 | 45.3 74.1 88.1 91.7 50 | 49.9 789 90.9 93.7
100 | 68.1 88.4 93.3 93.0 100 | 62.6 90.4 99.2 99.1 100 | 66.4 92.4 99.4 99.3
200 | 79.1 97.8 99.6 99.5 200 | 76.3 98.1 100 100 200 | 786 98.2 100 100
500 | 82.1 99.9 100 100 500 | 81.8 99.9 100 100 500 | 82.1 99.9 100 100
ko = ko = ko =
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 52.5 61.7 61.1 55.5 50 | 45.9 71.1 854 87.7 50 | 51.7 75.7 89.7 90.4
100 | 65.3 75.9 74.7 74.2 100 | 62.4 89.8 98.8 99.2 100 | 67.0 91.5 99.1 99.6
200 | 72.7 95.6 97.1 96.0 200 | 71.7 97.0 100 100 200 | 73.3 97.3 100 100
500 | 77.1 99.4 100 100 500 | 76.3 99.4 100 100 500 | 77.1 99.4 100 100
Part B: mg =2
SMT -2 max o2—diff max o2—ratio
ko=0 ko=0 ko=20
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 55.8 85.0 96.0 97.7 50 | 37.8 67.3 86.6 89.1 50 | 36.6 66.2 86.5 88.6
100 | 58.9 87.3 98.2 98.6 100 | 49.5 83.9 97.7 98.2 100 | 48.4 84.9 978 985
200 | 59.0 88.8 98.4 98.9 200 | 57.1 88.5 98.4 98.9 200 | 58.0 88.8 98.4 98.9
500 | 60.9 94.8 100 100 500 | 60.5 94.7 100 100 500 | 60.9 94.8 100 100
ko=1 ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 36.2 67.3 79.1 79.5 50 | 30.7 56.1 72.2 76.5 50 | 28.2 52.6 67.3 70.3
100 | 41.7 785 91.5 924 100 | 49.1 84.9 974 98.2 100 | 44.3 77.6 91.6 927
200 | 43.5 87.6 98.3 99.3 200 | 64.4 97.0 99.9 100 200 | 56.8 91.1 99.3 99.5
500 | 46.0 96.2 100 100 500 | 75.1 98.3 100 100 500 | 65.4 97.6 100 100
ko=2 ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 38.9 61.3 63.0 60.5 50 | 29.4 53.2 73.0 75.8 50 | 28.7 50.1 65.5 69.8
100 | 48.4 733 79.6 79.6 100 | 54.2 87.5 97.8 985 100 | 49.8 78.3 91.9 93.0
200 | 47.5 86.9 96.8 97.1 200 | 71.0 98.5 100 99.9 200 | 61.4 92.8 99.2 99.7
500 | 41.0 94.6 99.9 100 500 | 77.6 99.3 100 100 500 | 66.0 97.8 100 100

Notes: SMT—o2 refers to SMT—o2 thresholding, implemented with pmaxz = mqg + ko + 1 as described in Algorithm 5. max o2 —diff
and max o2 —ratio denote detection of pervasive units via algorithms 6 and 7, conducted with pmaz = mqg + ko + 1.
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Table S4.2: Average number of non-pervasive units falsely selected as pervasive units (mgy > 0
and o = 1)

Part A: mg=1

SMT—o? max o2 —diff max o2—ratio
ko=0 ko=0 ko=0
N\T | 60 110 210 250 NA\T | 60 110 210 250 N\T | 60 110 210 250
50 0 0 0 0 50 | 0.1 0 0 0 50 | 0.1 0 0 0
100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 1 ko = 1 ko = 1
N\T | 60 110 210 250 NA\T | 60 110 210 250 N\T | 60 110 210 250
50 0.2 0.1 02 0.2 50 | 0.5 0.2 0.1 0.1 50 | 0.4 0.2 0.1 0
100 { 0.1 0.1 0.1 0.1 100 | 0.1 0 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 2 ko = 2 kg = 2
N \T 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50104 03 04 0.5 50 | 0.7 04 0.2 0.1 50106 03 01 0.1
100 | 0.1 0.2 0.3 0.3 100 | 0.2 0.1 0 0 100 | 0.2 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
Part B: mg =2
SMT—o? max o2 —diff max o2—ratio
ko=0 ko=0 ko=0
N\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 0 0 0 0 50102 0.1 01 0.1 50 | 0.2 0.1 0 0
100 0 0 0 0 100 | 0.1 0 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 1 ko = 1 ko = 1
N\T | 60 110 210 250 NA\T | 60 110 210 250 N\T | 60 110 210 250
50 (0.2 01 01 0.1 50 104 0.2 01 0.1 50103 0.1 0.1 0
100 0 0 0 0 100 | 0.2 0.1 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 | 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 2 ko = 2 kg = 2
N\T | 60 110 210 250 NA\T | 60 110 210 250 N\T | 60 110 210 250
50103 03 03 04 50106 03 01 0.1 50104 02 01 0.1
100 | 0.1 0.1 0.2 0.2 100 | 0.2 0.1 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 | 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S4.1.
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Table S4.3: Empirical frequency of correctly identifying only the true weakly pervasive (influ-
ential) units (m > 0, a = 0.8)

Part A: mg =1

SMT -2 max o2—diff max o2—ratio
ko=0 ko=0 ko=20
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 51.2 80.6 954 97.5 50 | 47.4 74.6 88.0 89.9 50 | 50.4 77.8 90.8 92.6
100 | 87.2 98.9 100 100 100 | 75.6  95.0 99.2 99.5 100 | 79.3 97.3 99.8 99.9
200 | 97.5 100 100 100 200 | 91.6 99.4 100 100 200 | 94.1 99.9 100 100
500 | 97.7 100 100 100 500 | 96.3 100 100 100 500 | 97.5 100 100 100
ko = ko = ko =
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 37.4 65.2 79.1 78.9 50 | 26.3 49.6 73.1 774 50 | 28.9 53.5 76.9 81.0
100 | 65.1 90.5 93.7 93.5 100 | 48.9 84.7 98.0 98.1 100 | 52.8 88.2 99.3 99.1
200 | 84.6 99.4 99.6 99.5 200 | 72.0 98.1 100 100 200 | 76.0 99.4 100 100
500 | 82.7 99.9 100 100 500 | 80.2 99.7 100 100 500 | 81.9 99.9 100 100
ko =2 ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 37.7 53.3 58.2 54.5 50 | 28.2 50 70.9 74.1 50 | 32.0 54.3 755 78.6
100 | 64.2 79.7 753 T74.4 100 | 50.3 83.1 97.6 98.2 100 | 54.5 87.9 98.6 99.4
200 | 82.7 98.2 97.1 96.0 200 | 71.3 98.0 99.8 100 200 | 75.8 99.2 100 100
500 | 80.9 100 100 100 500 | 77.5 99.9 100 100 500 | 79.6 100 100 100
Part B: mg =2
SMT -2 max o2—diff max o2—ratio
ko=0 ko = ko=20
N \T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50| 6.6 31.6 63.7 67.3 50 | 14.1 27.0 39.2 41.5 50 | 13.4 25.7 38.6 40.2
100 | 13.7 574 89.2 92.6 100 | 13.0 36.8 62.4 68.1 100 | 12.6 35.9 60.4 66.2
200 | 7.7 482 88.1 92.0 200 | 54 36.0 78.7 85.1 200 | 4.8 34.8 77.0 84.0
500 | 0.9 23.0 71.0 79.3 500 | 0.6 20.1 70.6 79.1 500 | 0.5 19.9 70.6 79.2
ko=1 ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50| 8.9 320 606 63.7 50| 9.6 21.6 323 34.1 50 | 9.5 20.7 31.6 33.1
100 | 16.5 61.3 88.8 91.5 100 | 13.6 37.8 60.6 65.3 100 | 13.3 36.4 58.7 63.9
200 | 11.4 61.8 94.7 97.1 200 | 9.8 44.1 825 &7.7 200 | 89 427 80.7 86.2
500 1.8 323 84.6 91.7 500 | 0.9 284 83.7 91.5 500 | 0.9 279 83.7 91.7
ko=2 ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250 N\T 60 110 210 250
50 | 13.3 33.5 50.1 50.4 50 | 9.7 187 329 36.7 50 | 9.4 188 32.2 36.3
100 | 26.6 65.3 79.3 80.2 100 | 16.6 39.2 67.5 728 100 | 15.3 38.3 65.3 70.9
200 | 17.6 75.7 96.1 96.6 200 | 13.1 51.2 88.0 91.8 200 | 12.5 50.4 86.4 90
500 | 2.4 36.5 89.2 93.8 500 1.6 33.0 885 93.6 500 1.7 319 884 93.6

Notes: See the notes to Table S4.1.
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Table S4.4: Average number of non-pervasive units falsely selected as pervasive units (mgy > 0

and a = 0.8)

Part A: mg=1

SMT—o? max o2—diff max o2—ratio
k)g - O k’o — 0 k?() — 0
NA\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 0 0 0 0 50104 02 01 0.1 50104 0.2 0.1 0.1
100 0 0 0 0 100 | 0.2 0.1 0 0 100 | 0.2 0 0 0
200 0 0 0 0 200 | 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
k’g =1 ]{30 =1 k‘o =1
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
501 0.2 0.2 02 0.2 50109 0.7 03 0.3 50108 06 03 0.2
1001 0.1 0.1 0.1 0.1 100 | 0.5 0.2 0 0 100 { 0.4 0.1 0 0
200 0 0 0 0 200 | 0.2 0 0 0 200 | 0.1 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko =2 ko =2 ko =2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
501 0.5 04 0.5 0.5 50111 08 04 04 5011.0 0.7 04 0.3
1001 0.2 0.2 03 0.3 100 | 0.6 0.2 0 0 100 | 0.5 0.2 0 0
200 0 0 0 0 200 | 0.2 0 0 0 200 | 0.2 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
Part B: mg =2
SMT—o? max o2—diff max o2—ratio
k)g - O k’o — 0 k?() — 0
NA\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 1 0.1 0.1 0 0 50105 04 03 0.3 50105 04 02 0.2
100 0 0 0 0 1001 0.3 0.2 01 0.1 1001 0.2 0.2 0.1 0.1
200 0 0 0 0 2001 0.1 0.1 0 0 2001 0.1 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko =1 ko = ko =
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
501 0.2 0.2 02 0.2 50109 07 05 05 50108 06 04 04
1001 0.2 0.1 0.1 0.1 1001 0.6 04 02 0.2 100105 04 02 0.2
200 0 0 0 0 2001 0.2 0.2 0.1 0 2001 0.2 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko =2 ko =2 ko=2
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
501 0.5 04 04 0.5 50112 09 06 0.6 50 1.0 0.7 0.5 0.5
100 1 0.3 0.2 0.2 0.2 100 1 0.8 0.5 0.2 0.2 100107 04 0.1 0.1
200 | 0.1 0 0 0 200103 03 0.1 0 200 1 0.2 0.2 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S4.1.
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S5 Simulation results for unmodified BM

In the paper we have used a modified version of BM’s detection method discussed in Section
6 of Brownlees and Mesters (2018), whereby only the N/2 most connected cross-section units
are considered when determining the number of pervasive units. This section complements
the simulations in Section 6 of the paper and report results for BM without this modification
(henceforth unmodified BM ). When implementing this procedure, the number of pervasive units
is determined from all NV cross section units in the dataset. All other details of the simulation
exercise are as described in Section 6 of the paper.

Results on the probability of correctly determining the absence of pervasive units from the
data are left out since BM selects at least one unit as pervasive by construction. The results for
experiments with mg > 0 are summarized in Table S5.1. As can be seen the average number
of units detected as pervasive turns out to be much larger as compared to the modified BM.
In fact, more than half of the cross section units in the sample are, on average, found to be
pervasive. In some cases, standardization of the data leads to a considerable decrease in the
number of detected units. However, the set of cross section units falsely identified as pervasive
continues to be sizeable.

In cases where the data are driven by at least one pervasive unit, unmodified BM method
exhibits a reasonable performance if T'— N is large enough, and if the data is not standardized
(see Table S5.2). By contrast, standardizing individual-specific time series has severe conse-
quences for the probability of correctly detecting the true pervasive units, especially in the
presence of external factors. As can be seen from Table S5.4, the same results obtain if the true
pervasive units are weakly pervasive. The average number of units falsely detected as pervasive
can be substantial. See Table S5.3 and Table S5.5).
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Table S5.1: Average number of non-pervasive units falsely selected as pervasive (mg = 0)

unmodifed BM

unmodified BM (standardized)

]{?0 — 0 ]{5() - O
NA\T 60 110 210 250 NA\T 60 110 210 250
o0 ]29.7 31.2 364 36.9 501293 232 260 295
100 | n/a 61.7 69.0 71.9 100 | n/a 60.7 46.3 49.0
200 | n/a n/a 126.2 1234 200 | n/a n/a 126.0 93.8
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =1 k’o =1
NA\T 60 110 210 250 NA\T 60 110 210 250
o0 | 28.7 316 371 374 50 | 26.0 17.2 143 14.6
100 | n/a 60.6 679 73.1 100 | n/a 54.8 29.8 26.2
200 | n/a n/a 123.1 1284 200 | n/a n/a 1111 785
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]{30 =2 ]{fo =2
NA\T 60 110 210 250 NAT 60 110 210 250
50 | 30.5 314 36.1 37.6 50| 25.8 178 139 126
100 | n/a 61.6 69.3 72.1 100 | n/a 522 254 24.8
200 | n/a n/a 126.8 127.2 200 | n/a n/a 1055 72.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: unmodified BM refers to the detection method of Brownlees and Mesters (2018) as intro-
duced formally in Section 3 of their paper. unmodified BM (standardized) stands for application of
unmodified BM to data that have been recentered and rescaled so that each cross-section specific
time-series has an average of zero and a variance of one. BM methods are not applicable (n/a) if
T <N.
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Table S5.2: Empirical frequency of correctly identifying only the true strongly pervasive units
(mo >0, and o = 1)

Part A: mg=1

unmodifed BM

unmodified BM (standardized)

ko =10 ko =0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 484 98.3 100.0 100.0 50 | 47.0 98.2 99.7 999
100 | n/a 73.6 100.0 100.0 100 | n/a 69.3 100.0 100.0
200 | n/a n/a 89.6 100.0 200 | n/a n/a 87.4 100.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a nf/a
ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 42.1 96.7 999 99.9 50 | 25.6 747 90.7 931
100 | n/a 67.3 100.0 100.0 100 | n/a 476 99.0 99.8
200 | n/a n/a 85.0 100.0 200 | n/a n/a 694 99.9
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 36.7 954 99.6 99.8 50 | 12.8 45.1 62.7 654
100 | n/a 63.6 100 100 100 | n/a 29.6 944  96.0
200 | n/a n/a 837 100 200 | n/a n/a 53.3 983
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodifed BM unmodified BM (standardized)
ko =10 ko =0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 23.6 91.7 994  99.7 50 | 5.4 408 68.7 724
100 | n/a 46.0 100.0 100.0 100 | n/a 16.7 949 984
200 n/a n/a  66.5 100.0 200 | n/a n/a 38.1 978
500 | n/a n/a n/a n/a 500 | n/a n/a n/a nj/a
ko - ko =1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 17.1 8.1 979 98.5 50| 14 75 165 177
100 | n/a 36.9 99.9 100.0 100 | n/a 56 585 63.1
200 | n/a n/a 557 99.9 200 | n/a n/a 148 75.6
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 1555 79.5 96.3 97.35 50| 0.2 1.0 2.2 1.6
100 | n/a 33.1 99.95 99.85 100 | n/a 1.5 228 287
200 | n/a n/a 50.35 99.65 200 | n/a n/a 5.8  46.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S5.1.



Table S5.3: Average number of non-pervasive units falsely selected as pervasive (mg > 0, and
a=1)

Part A: my=1

unmodifed BM unmodified BM (standardized)
k’o - O k?() - O
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 147 03 0.0 0.0 50 | 125 0.0 0.0 0.0
100 | n/a 16.0 0.0 0.0 100 | n/a 154 0.0 0.0
200 | n/a n/a 121 0.0 200 | n/a n/a 123 0.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko = 1 ko = 1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 176 0.6 0.0 0.0 50 119.1 29 05 0.3
100 | n/a 19.6 0.0 0.0 100 | n/a 26.0 0.0 0.0
200 | n/a n/a 19.6 0.0 200 | n/a n/a 30.0 0.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 (185 1.1 0.1 0.1 50 [ 23.7 10.0 53 4.7
100 | n/a 216 0.0 0.0 100 | n/a 376 0.7 0.3
200 | n/a n/a 194 0.0 200 | n/a n/a 49.1 0.4
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodifed BM unmodified BM (standardized)
k’o — 0 k?() - O
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 11.7 04 0.0 0.0 50 1169 22 04 0.5
100 | n/a 82 0.0 0.0 100 | n/a 196 0.0 0.0
200 | n/a n/a 62 0.0 200 | n/a n/a 182 0.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko = 1 ko = 1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 13.0 1.1 0.1 0.0 50 | 214 100 68 6.3
100 | n/a 13.7 0.0 0.0 100 | n/a 33.7 1.0 0.7
200 | n/a n/a 10.0 0.0 200 | n/a n/a 425 0.6
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 13.8 1.1 02 0.2 20| 26.0 19.2 17.8 18.2
100 | n/a 13.7 0.0 0.0 100 | n/a 44.0 83 6.3
200 | n/a n/a 12.7 0.0 200 | n/a n/a 67.3 4.9
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.4: Empirical frequency of correctly identifying only the true weakly pervasive (influ-
ential) units (mg > 0, and o = 1)

Part A: mg=1

unmodifed BM unmodified BM (standardized)
k’o - O k’() — 0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 15.8 63.2 87.6 904 50 | 21.9 69.3 85.3 87.8
100 | n/a 30.1 99.0 100.0 100 | n/a 37.8 984 99.4
200 | n/a n/a 44.8 99.3 200 | n/a n/a 54.9 99.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
mo = 1, k=1 ]{30 =1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 13.3 59.8 87.1 89.3 50 | 9.7 31.1 454 45.1
100 | n/a 27.5 98.8  99.6 100 | n/a 21.7 82.0 84.9
200 | n/a n/a 443 98.7 200 | n/a n/a 37.5 89.8
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
mo=1,k=2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 [ 13.3 59.0 84.6 88.7 50| 5.9 135 159 174
100 | n/a 25.6 98.8 99.5 100 | n/a 129 52.8 59.7
200 | n/a n/a 44.6 98.6 200 | n/a n/a 243 753
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodifed BM unmodified BM (standardized)
k’o — 0 k’o — 0
NA\T 60 110 210 250 NA\T 60 110 210 250
50| 4.6 438 749 794 50| 1.4 49 9.0 11.5
100 | n/a 10.8 94.3 98.0 100 | n/a 3.1 43.7 50.9
200 | n/a n/a 207 942 200 | n/a n/a 10.3 645
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
mo = 2, k=1 ]{30 =1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 4.2 416 70.2 76.5 50| 0.2 06 0.7 0.7
100 | n/a 10.2 94.3 96.4 100 | n/a 1.3 11.9 11.8
200 | n/a n/a 17.1 922 200 | n/a n/a 3.3 29.3
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
my=2k=2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50| 3.2 39.1 68.8 73.5 50/ 0.0 01 00 0.0
100 | n/a 9.1 921 959 100 | n/a 04 15 14
200 | n/a n/a 17.0 91.2 200 | n/a n/a 14 94
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S5.5: Average number of non-pervasive units falsely selected as pervasive (mg > 0, and
a=0.8)

Part A: my=1

unmodifed BM unmodified BM (standardized)
k’o - O k?() - O
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 25.1 10.1 44 3.3 50 1 19.2 27 03 0.2
100 | n/a 435 0.3 0.0 100 | n/a 327 0.0 0.0
200 | n/a n/a 729 0.6 200 | n/a n/a 46.5 0.1
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko = 1 ko = 1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 26.8 120 4.3 3.5 50 1212 73 33 28
100 | n/a 44.1 04 0.3 100 | n/a 387 11 04
200 | n/a n/a 726 1.3 200 | n/a n/a 594 2.2
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 25,5 122 52 3.9 20 {231 11.7 88 81
100 | n/a 46.8 0.7 0.3 100 | n/a 43.6 7.0 44
200 | n/a n/a 69.4 1.5 200 | n/a n/a 721 8.6
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodifed BM unmodified BM (standardized)
k’o — 0 k?() - O
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 225 7.1 27 2.2 50 | 186 52 33 3.2
100 | n/a 33.7 0.2 0.1 100 | n/a 298 09 0.6
200 | n/a n/a 482 0.4 200 | n/a n/a 43.0 0.9
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko = 1 ko = 1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 221 85 33 25 50 1202 95 65 6.6
100 | n/a 354 04 0.1 100 | n/a 355 4.6 3.5
200 | n/a n/a 523 0.7 200 | n/a n/a 56.8 5.8
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
501232 79 35 29 50 | 21.6 12.8 104 10.0
100 | n/a 369 0.6 0.1 100 | n/a 413 126 10.2
200 | n/a n/a 56.3 0.7 200 | n/a n/a 75.1 18.5
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S5.1.
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Table S6.1: Pervasive units in sector-wise industrial production in the U.S.

Full sample (1972m1 - 2007m12)

Approach: unmodified BM unmodified BM (standardized)

Number of perva- 137 2

sive units:

Identities: all except Automobiles and Light Duty Motor Vehicles
Iron Ore Mining Motor Vehicle Parts

Sub-sample A (1972m1 - 1983m12)

Approach: unmodified BM unmodified BM (standardized)
Number of perva- 135 2

sive units:

Identities: all except Motor Vehicle Parts

Iron Ore Mining
Heavy Duty Trucks
Motor Homes

Sub-sample B (1984m1 - 2007m12)

Approach: unmodified BM unmodified BM (standardized)
Number of perva- 137 5

sive units:

Identities: all except Motor Vehicle Parts

Audio and Video Equipment Automobiles and Light Duty Motor Vehicles
Aluminum Extruded Products

Miscellaneous Aluminum Materials
Motor Vehicle Bodies

Notes: Data taken from Foerster, Sarte, and Watson (2011).

S6 Empirical results for unmodified BM

In this section we provide results obtained if the unmodified BM procedure is used in our em-
pirical applications. The data sources and transformations are as described in Section 7 of the
paper. Again, unmodified BM method is applied to the data with and without standardization.
The results are summarized in Tables S6.1-S6.3, and suggest that unmodified BM grossly over-
estimates the number of pervasive units in almost all applications, regularly detecting all but
one or two cross section units as pervasive. The use of standardized data leads in all but one
case to a lower detected number of pervasive. However, while the reduction can be quite sub-
stantial, in a number of applications the number of pervasive units detected using standardized
data can be quite large (5 or more in some the applications).
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Table S6.2: Pervasive countries in terms of quarterly macroeconomic indicators

Variable: real GDP growth real equity price growth

Approach: unmodified BM  unmodified BM (std) unmodified BM  unmodified BM (std)

Number of perva- 2 11 25 1

sive units:

Identities: France * all except Netherlands
Spain Argentina

*: Ttaly; Spain; France; USA; Germany; Canada; UK; Malaysia; Belgium; Finland; South Africa.
Notes: Data taken from GVAR database (Mohaddes and Raissi, 2018).

Table S6.3: Estimated U.S. states with pervasive housing market

Approach: unmodified BM  unmodified BM (standardized)

Number of perva- 47 6

sive units:

Identities: all except Connecticut Maryland
Nevada New Hampshire Virginia

Massachusetts Rhode Island
Notes: Data taken from Yang (2018) and Freddie Mac House Price Indexes.
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